En lektion för små barn i kombinatorik

Rolig matte?

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Kombinatorik

Kombinatorik är läran om kombinationer och permutationer, men för mig är det helt enkelt ett grundläggande tankesätt när man håller på med problemlösning. När du till exempel väljer vad du ska ha på dig på en festkväll är det kombinatoriken som säger om du har testat alla … kombinationer.

Samma teori hjälper dig när du lägger pussel. Kombinatoriken hjälper dig att testa de likadana ljusblå bitarna till himlen systematiskt istället för att bara slumptesta. Problemet löses snabbare och du är säkrare på att du har löst det!

Vissa av mina matematiker älskar kombinatorik, vissa ser det bara som ett oundvikligt redskap. Själv är jag väldigt tacksam för att min pappa lärde mig kombinatorik tidigt, redan vid 11 års åldern ungefär.

Om du är osäker på vad ämnet innebär rent praktiskt, kolla aktiviteterna nedan. Lekarna skall tjäna som en slags introduktion till ämnet.

Uppdrag med gubbar och hus

För att leka uppställning i olika rader och ringar är det bra att ha likadana objekt i olika färger. Så varför inte spelgubbar?

Jag plockade fram spelet Arkadia ut hyllan och upptäckte massa potential i spelkomponenterna:

På bilden ser ni gubbar i fem olika färger (jag kommer använda 11 i varje färg), torn som går att stapla på varandra, olika slags pengarbrickor, tetrisliknande brickor och kort. Längst bak till vänster ser ni “tält” som det går att hänga upp små flaggor på.

Vi ska leka “Köpmännens stad”, där barnen får svara på olika svåra frågor eller utföra olika svåra uppgifter (beroende på vad det är för ålder). För varje klarat uppdrag hängs en flagga upp. Målet är att ha så många flaggor som möjligt uppe.

5 år

För de minsta barnen handlar kombinatorik om att räkna, gruppera och jämföra. Följande uppgifter kan vara lämpliga:
– Gubbarna står i olika grupper. Hitta en siffra som motsvarar antalet gubbar i gruppen (1,2,3,4 etc.) och lägg den bredvid gruppen. Vilken grupp är störst? Vilken är minst?
– Vilka är fler: de gröna eller de gula gubbarna (lösningen är att para ihop dem, en gul med en grön och se om någon sort blir över)?
– Arrangera alla gubbarna (det är 55 stycken) i trianglar, så att hörnen ugörs av var sin gubbe. Arrangera gubbarna i cirklar. Arrangera gubbarna i en jättestor rektangel, om det går.
– Varje gubbe ska få var sitt mynt. Plocka fram så mycket mynt, som gubbarna skall ha tillsammans (5- och 10-myntbrickor får användas).
– Nu går gubbarna hem. Kan ni placera dem i grupper så som de var i början? (Siffrorna 1,2,3,4 etc. ligger kvar och hjälper till).

6 år

Några frågor kan vara samma som för femåringarna. Dessutom är det dags att börja med riktiga kombinationer.
– Gubbarna bestämde sig för att prata med några nya människor (köpmän av annan färg). Kan man dela upp gubbarna i par så att alla är med någon annan färg (Svar: alla utom en gubbe går att dela in i par)?
– Nu skulle gubbarna bilda lag, där tre olikafärgade köpmän skulle ingå. Hur många olika sortes lag kan bildas (Svar: 10 stycken)?
– Kan de tio lagen ställas ihop i en stor ring, så att inga två gubbar av samma färg står bredvid varandra?
– Efter att barnen ställer tillbaka gubbarna så som de stod i början, plockar jag bort några stycken under tiden som barnen blundar. Sedan skall barnen titta på bordet och försöka lista ut hur många jag tog bort.

Efter uppdragen kan vi röra på oss lite. Barnen, uppdelade i två grupper, ställer sig i en ring. Sedan skall de byta plats inom sin grupp så att det inte blir samma ring som förut. Hur många olika ringar kan bildas? (Svar: är de 3 stycken, finns det 2 olika ringar, är de 4 stycken, finns det 6 olika ringar.)

7 år

En del uppdrag lånar jag från sexåringarna, speciellt det sista om ringar. Med med sjuåringarna anteckngar vi de olika ringarna mha gubbarna i olika färger. Andra uppgifter kan vara:
– Hur många gubbar är det totalt? Gubbarna/siffrorna får grupperas om för att det skall vara enklare att räkna.
– Nu står det rätt antal gubbar i varje rum, men inte alla har rätt färg. Går det att återställa situationen i början, genom att man får gå en gubbe i taget? Om en gubbe går in i en grupp och det blir för många gubbar i gruppen, måste en ny går ur gruppen och fortsätta vidare på samma sätt. Matematiskt handlar det om att faktorisera en permutation i en produkt av cykler. Vilket alltid går.
– Vilket antal små torn går att bygga ihop till en stor triangel? (Svar: 1,3,6,10 osv. Dessa tal kallas just “triangeltal”.)Är totala antalet gubbar ett triangeltal? (Svar: ja)
– På hur många sätt kan ni ställa er på en rad? Kan ni hitta på en egenskap för varje sätt? (T.ex.: länggordning, bokstavsordning etc.)

10 år

Frågorna om triangeltal, rader och ringar är som för sjuåringarna. Förutom det får tioåringarna problem i stil med:
– Kan 6 gubbar ställas ut på planet, så att det är 2 stycken vid varje kant?
– Kan gubbarna arrangeras om, så att antalet är detsamma (1,2,…,11), men färgerna är så olika som möjligt. Kan det vara så att det högst är 2 gubbar av varje färg i en och samma grupp? (Svar: nej, enligt lådprincipen måste gruppen med 11 personer innehålla minst 3 av samma färg.)

Pussel

Efter väl avklarade uppdrag skall vi göra gamla hederliga pussel. Förutom att det inte finns någon bild och formen på bitarna är oregelbunden!

Ett inte så lätt sjubitarspussel

Minne

Ett välkänt spel som tränar minne är att en person säger ett ord. Till exempel, om kategorin är “saker i rummet” kan första personen säga “bord”. Den andra personen måste då säger det förra ordet, samt ett ord till: “bord, tavla”. Nästa säger “bord, tavla, dator”. Och så fortsätter man tills någon gör fel: glömmer bort ordningen eller orden, eller säger ett ord som redan har sagts. Då kan man byta kategori.

Den här leken passar stora som små och tränar både språk, minne och kategorisering.

Einsteins pussel

De äldre barnen är mogna för ett logikpussel. Sjuåringarna får klura på ett 3×3-pussel, de äldre kan ta sig an något i stil med 5×4.

3 reaktioner till “En lektion för små barn i kombinatorik”

  1. Kanske strump-problemet passar för någon/några av grupperna? Dvs, om man slumpmässigt plockar upp en gubbe/strumpa i taget, hur många måste man ta upp för att vara säker på att få ett par med lika färger?

Kommentera