Lösning till problem vecka 20

På ett lager fanns likadana ostar. En natt kom sluga råttor dit och åt upp 10 av ostarna. Varje råtta åt lika mycket. Några råttor klarade dock inte av måltiden och fick ont i magen. Nästa natt kom de 7 råttorna som inte fick ont i magen och åt upp resten av osten. Dock fick varje råtta hälften så mycket som natten innan. Hur många ostar fanns det från början?

Alla lösningar jag har fått in går ut på att ställa upp ett ekvationssystem. Lösningen nedan är kopierad från Erik R.

Lösning:

Man kan definiera tre okända storheter: O för antalet ostar, R för antalet råttor och Ä för hur många ostar varje råtta åt under den första natten. Man får då förstås det enkla sambandet

R*Ä = 10 => Ä = 10/R

Man kan då räkna på O

O = 10 + 7*Ä/2

O = 10 + 35/R

Man tänker sig att O skall vara ett heltal, så om det inte finns några bråkdelsråttor som springer omkring måste R vara 1, 5, 7 eller 35. Det framgår dock att R>7, vilket ger R=35. Då blir förstås antalet ostar O=11.

Matteproblem vecka 20

På ett lager fanns likadana ostar. En natt kom sluga råttor dit och åt upp 10 av ostarna. Varje råtta åt lika mycket. Några råttor klarade dock inte av måltiden och fick ont i magen. Nästa natt kom de 7 råttorna som inte fick ont i magen och åt upp resten av osten. Dock fick varje råtta hälften så mycket som natten innan. Hur många ostar fanns det från början?

Ostbitar

Rekommenderad från: 12 år

[kkratings]

Det finns 25 ostbitar. Går det alltid att välja en bit, skära den i två delar på så sätt att osten nu kan läggas i två kassar så att den uppskurna ostens delar hamnar i olika kassar och det finns lika många ostbitar i varje kasse och osten i kassarna väger lika mycket?

Visa lösningen

© 2009-2024 Mattebloggen