För circa en månad sedan hölls kvalomgången i Högstadiets Matematiktävling. Det är en tävling i problemlösning som riktar sig till årskurs 6-9, men självfallet lyckas eleverna i årskurs 8-9 få bäst resultat. Därför är det mest elever från dessa årskurser som går vidare till finalomgången.
Därmed inte sagt att de inte kan gå bra för elever i åk 6-7! Det de eventuellt saknar är några kunskaper om geometri samt delbarhet, vilket ett par av årets kvaluppgifter gick ut på. Däremot kunde man klara sig riktigt bra även om man ”bara” hade löst fyra uppgifter av sex. 10 poäng räckte nämligen för att gå till final (3 poäng tilldelas för varje korrekt löst uppgift). Du kan läsa mer om årets omgång på HMT:s hemsida, medan vi tittar närmare på själva uppgifterna.
Problem 1
Det går att skriva tal i rutorna i figur 1 så att om man följer pilen från en ruta och
använder räkneoperationen som står vid pilen så får man talet i nästa ruta.
Vilket tal är då X? Ange även en möjlig räkneoperation att ersätta frågetecknet med.
Lösning
Strategin är att gå baklänges från 13 till X på vägen gjord av pilarna till vänster. Till 13 kommer vi genom att dela med 2, så talet innan måste vara 26. Till 26 kommer vi genom att subtrahera 1, så talet innan är 27. Innan dess multiplicerade vi talet med 3, så talet innan måste ha varit 9. Och från X kom vi till 9 genom att subtrahera 11, så X måste ha varit 20.
På samma sätt kan vi bestämma talen på högra pilvägen. Till 13 måste vi ha kommit från 18, till 18 från 12, till 12 från 6. Om vi ska komma från 20 till 6 så kan operationen under frågetecknet vara -14 till exempel.
Kommetarer
Det här en typiskt uppgift nästan alla tävlande klarar av. Man hoppas ju innerligt att ALLA elever i åk 9 ska kunna klara av en sådan uppgift. Men så är tyvärr inte fallet, vilket bara beror på att dessa elever antagligen skulle missförstå uppgiften.
En grej man inte tänker på när man är van vid ekvationer är att ”x2” och ”x3” skulle kunna misstolkas att handla om ”X”. Bokstaven ”X” står i mitten för att göra uppgiftsformuleringen tydligare, men kan tvärtom skrämma elever som inte gillar ekvationer. Man skulle kunna ställa upp lösningen på första halvan av uppgiften såhär:
((X – 11)*3 – 1)/2 = 13
Men hur kul formulering är det? Vilken av formuleringarna uppmanar till någorlunda kreativt tänkande och vilken till att ”komma ihåg och tillämpa inlärd metod”? Just det, olika formuleringar på samma uppgift blir pedagogiskt sett helt olika uppgifter! De flesta elever tror jag skulle lyckas lättare på den första formuleringen. Något att tänka på när man introducerar ekvationer i skolan.
Problem 2
Om talet A vet vi följande:
- Talet A ger resten 5 när det delas med 11.
- Talet A ger resten 4 när det delas med 9.
- Talet A ger resten 5 när det delas med 7.
- Talet A ger resten 4 när det delas med 5.
Vilken rest får man när man delar A med 3?
Lösning
Svaret kan vara antingen 0, 1 eller 2, eftersom inga andra rester förekommer när man dividerar med 3. Talet A kan vara hur stort som helst, men vi försöker ”få plats” med så många 3:or i talet som det bara går.
För det kan vi använda att talet A har rest 4 när det delas med 9. Det betyder att man får plats med ett antal 9:or och det blir 4 över. Men en 9:a är ju tre 3:or, därför vet vi att talet A innehåller ett ännu större antal 3:or, men det viktigaste är att det blir 4 över. Där får det plats en 3:a till och det blir 1 över. Därför är resten lika med 1.
Kommetarer
Svårigheterna med att lösa den här uppgiften består av att man inte vet vad division med rest innebär, eftersom man inte fokuserar så mycket på just rester i skolan. Och även om man vet vad resten är, så kanske man försöker bestämma talet A, vilket inte ger ett heltäckande resultat (det finns flera tal A som har de nämnda egenskaper, till och med oändligt många sådana tal finns det). Och så är det förstås vilseledande att det bara villkor två som är viktigt.
Tar man sig igenom de hindren, så är inte uppgiften svår.
Problem 3
På Skänkvägen står elva hus på rad, numrerade från 1 till 11. Eftersom sämjan bland
grannarna är god, så bjuds det ofta på middag. När man bjuder på middag bjuder man
in de två närmaste grannhusen på båda sidor. Om man inte har två grannar på någon
sida bjuder man alltså in färre grannar, till exempel bjuder hus 2 in grannarna i hus 1, 3
och 4.
En dag ärver familjen i hus 2 en riktigt, riktigt ful tavla. När familjen nästa gång blir
bjuden på middag bestämmer man sig därför att ge bort tavlan till kvällens värd. Men
tavlan är så ful att ingen på gatan vill behålla den, så vid första möjlighet ger man därför
bort den till den middagens värd. Av artighetsskäl kan man såklart inte ge tillbaka tavlan
till någon man själv fått den av, och inte heller till någon man själv redan en gång givit
bort den till.
Vem kommer till slut att vara tvungen att behålla tavlan?
Lösning
Vi hoppar vilt i svårighetsnivån! Vi ”finkammar” uppgiften lite först, för att senare lättare kunna formulera lösningen.
Man kan bara ge bort/ta emot tavlan av hus som ligger 1 eller 2 steg bort ifrån ens eget. Om hus A gav bort tavlan till hus B så är den förbindelsen A-B ”förbrukad” eftersom tavlan inte får ges på samma sätt och inte heller ges tillbaka från hus B till hus A. Således kan vi rita ut alla förbindelser och tänka oss att tavlan vandrar längs med dem och ”förbrukar” dem (husen ligger på rad, men att vi ritar dem på en cirkel spelar ingen roll, det är förbindelseschemat som är det viktiga):
Låt oss för en stund strunta i var tavlan börjar sin väg (hus 2). Vi tänker istället på var tavlan kan sluta (någon annanstans i hus 2?). Kanske slutar tavlan i hus 4, så vi tittar på förbindelser som har med hus 4 att göra:
Om hus 4 är huset som inte kan skicka tavlan vidare, så betyder det att tavlan kom till dem och i och med det var alla förbindelser förbrukade. Hur förbrukades förbindelserna? Varje gång hus 4 fick tavlan så förbrukades nästa förbindelse genom att de gav bort den, och tvärtom. Så eftersom tavlan inte började där, måste förbindelserna förbrukats i ordningen: fick – gav bort – fick – gav bort. Därför kunde inte hus 4 fått tavlan på sin sista förbindelse.
Husen 3, 5, 6, 7, 8, och 9 befinner sig i samma situation. De har fyra förbindelser var och därför följer samma schema, om nu alla fyra förbindelserna skulle förbrukas: fick – gav bort – fick – gav bort.
Samma sak är det egentligen för husen 1 och 11 som har två förbindelser var. Får de tavlan, så har de ju möjlighet att ge bort den.
Därmed är det bara hus 2 och 10 kvar. Hus 2 har tavlan från början och därför följer schemat ”gav bort – fick – gav bort”, OM vi är säkra på att alla förbindelser förbrukas. Därför är hus 10 det enda huset som kan ha kvar tavlan utan att kunna ge bort den.
En möjlig väg för tavlan kan vara 2 -> 4 -> 6 -> 8 -> 10 -> 11 -> 9 -> 10. Nu kan hus 10 inte ge bort tavlan.
Kommetarer
Läsaren som är bekant med grafteori förstår att så fort vi har ”kammat” problemet så handlar det om i princip Eulerstigar. Men enkel formulering kan man säga att en figur, som man ritar utan att lyfta pennan från pappret, har som mest två punkter, varifrån det utgår ett udda antal linjer. En av punkterna kommer då vara startpunkten och den andra slutpunkten.
Problem 4
I parallelltrapetset ABCD är sidan AB 50% längre än sidan CD. Punkten P
är diagonalernas skärningspunkt. Arean av triangeln ADP är 12. Bestäm arean av hela
parallelltrapetset.
Lösning
Parallelltraps är en figur med två parallella sidor (det syns på bilden att det är AB och CD som är parallella). Om man ritar ut diagonalerna bildas det flera alternatvinklar, varav två par är inbördes lika. Det följer då att trianglarna APB och CPD är likformiga.
Vi färgkodar de fyra små trianglarna som syns på bilden:
Vi kom fram till att brun och röd var likformiga. De är dessutom likformiga med koefficienten 1,5 (eftersom röds motsvarande sida var 50% länge än bruns).
Vi vet även att blå+brun har samma area som grön+brun, eftersom båda dessa stora trianglar har samma bas DC och lika lång höjd (avståndet mellan de parallella linjerna). Därför har blå och grön samma area och vi vet från uppgiften att det är 12.
Blå och röd har samma höjd om vi tar DP pch PB som baser. Med DP och PB är motsvarande sidor hos den bruna och den röda triangeln. PB är alltså 1,5 gång större och då han även röd 1,5 gånger större area än blå, 12*1,5 = 18.
Blå och brun delar höjd om man nu väljer AP och PC som baser. Även här är PC 1,5 gånger mindre än AP. Så arean för brun är även den 1,5 mindre än arean för blå, det vill säga 12/1,5 = 8.
Därmed har vi bestämt alla de små trianglarnas areor. Arean för hela parallelltrapetser är
röd + brun + grön + blå = 18 + 8 + 12 + 12 = 50 (areaenheter)
Kommetarer
Måste erkänna att jag försökte lösa den här uppgift snabbt och misslyckades! Hade en alldeles för avancerad lösning och räknade fel någonstans på vägen. Så här ska man kunna ”lagom” mycket geometri :)
”Lagom” mycket geometri innebär bland annat: parallellitet, alternatvinklar, vertikalvinklar, likformiga trianglar, likformighetskoefficient, arean för en triangel, val av bas/höjd i en triangel. Inte så lite man ska kunna!
Framför allt ska man vara skolad för att genomföra bevis för att redovisa uppgiften på ett korrekt sätt. Geometriundervisningen som bygger på axiom/bevisföring har i princip försvunnit från svenska skolor, därför lyckades nästan ingen av deltagarna lösa (eller ens få poäng) på den här uppgiften. Jag tvivlar på att särskilt många gymnasister skulle kunna lösa den här uppgiften heller.
Problem 5
Genom att flytta om siffrorna i talet 2013 kan man få 18 olika fyrsiffriga tal. På hur många
sätt kan man välja två olika av dessa 18 tal så att deras summa är precis lika med ett av
de återstående 16 talen?
Lösning
Provar man lite så ser man att det här aldrig går. Hur förklarar vi det här på ett allmängiltigt sätt?
Om två tal som bara består av siffrorna 0, 1, 2 och 3 adderas, så kommer entalen, tiotalen, hundratalen samt tusentalen adderas var för sig, eftersom siffrorna är så pass små. Men det betyder att siffersumman för resultatet av additionen kommer vara lika med siffersumman för det första talen adderat med siffersumman för det andra talet.
Detta kan ju inte hända, eftersom siffersummorna för alla talen är 6. Därför kommer siffersumman för resultatet att bli 12 och det kan inget av talen i uppgiften ha.
Kommetarer
Den här uppgiften kan lösas på mängder av olika sätt, jag angav det kortaste jag kunde komma på. Sätter eleven in sig i uppgiftens formulering, så är resultatet mer eller mindre uppenbart. Hur man ska förklara resultatet är däremot inte lika uppenbart.
Jag tror att många elever känner intuitivt att det har med siffersumman att göra, men de är inte vana vid att formulera lösningar på det sätt, med bevarande av siffersumma och dylika termer. Därför gissar på att de använde mer krångliga förklaringar. Det kan vara frustrerande att försöka förklara något som är så pass uppenbart, men en bra övning om man vill bli bättre på att förstå och formulera egna bevis.
Problem 6
Rutnätet i figuren skall fyllas med tal. I varje ruta (utom i understa raden) står summan
av de två talen i rutorna direkt under den. Vilket tal skall stå i den översta rutan?
Lösning
Den här uppgiften kan både lösas baklänges (nerifrån och upp) och framlänges (uppifrån och ner). Istället för att bara införa två variabler inför vi jättemånga, det vill säga betecknar varje okänt tal med en bokstav.
Talet A består av talen B och C.
Talen B och C består av talen D och 503 och 503 och E.
Talen D och 1006 och E består av talen 253 och F och 1006 och G och 251. Totalt alltså 1510 och F och G.
Inte har vi kommit fram till svaret än, men vet att pyramidegenskapen även gäller talet 503: att det består av talen F och G.
Så vi vet att talet A består av 1510 och F och G, med andra ord av 1510 och 503, det vill säga lika med 2013. Klart!
Kommetarer
Även här tror man kanske att hela pyramiden måste bestämmas för att avgöra det översta talet, men så är inte fallet. Det finns flera olika pyramider som ser ut på det sättet och alla måste då ha 2013 i toppen. Notera att det är på samma sätt som i uppgift 2 och uppgift 4 – flera olika konstruktioner uppfyller uppgiftsvillkoren, men ger ändå ett och samma svar i slutändan.
Ibland (eller kanske alltid) går matematik ut på att dra korrekta och allmängiltiga slutsatser i situationer där vi inte har tillgång till fullständig information.
Hej,
En undran angående problem 6. Om man tittar på din bild av pyramiden, så kan man säga att F=503/2 + a ; och att därmed blir G= 503/2 – a. Detta gäller för vilket ’a’ som helst, och därmed bevisat att det inte spelar någon roll vilket värde F eller G har, men dock finns det ett samband mellan dem, dvs. deras summa måste bli 503. Iallafall om man för den tankegången vidare, har man D=503/2+a+253 ; E=503/2-a+251; B=503/2+a+253+503; C=503/2-a+251+503; A=503/2+a+253+503+503/2-a+251+503=503+253+503+251+503=1509+504=2013. Är inte detta en ganska elegant lösning? En variabel, och samtidigt visas oberoendet till vad denna variabels värde är?
Jag undrar bara ifall jag missat något här, jag noterade ett fall där en elev endast fick 2 poäng för det här resonemanget med motiveringen ’du bör ha använt 2 variabler’.
Hej!
Din lösning är helt korrekt och elegant. Det enda man kan fråga är motiveringen bakom varför 503/2+a ger alla möjligheter (kanske bör man beskriva vad har för definitionsmängd?)
Fick eleven 2 poäng på den slutgitliga rättningen? För där angav vi faktiskt inte kommentarer till varför vi satte poängen som vi satte. Det jag kan tänka mig att rättningen skedde först av läraren, och lärarna brukar gå efter en mall om de inte riktigt vet hur de ska bedöma. Det kan till och med hända att lärarna ger 3 poäng för lite eller 3 poäng för mycket i en bedömning. Sådant rättar vi om.
Hade iaf jag rättat uppgiften skulle jag satt 3 poäng för lösningen. Möjligen kan du maila kommittén och överklaga ifall eleven var på gränsen att komma till final?
På bloggen skrev jag en lösning utgående från hur kag tror många högstadieelever tänker. Vilket oftast inte är så elegant :)
Hej,
Tack för svaret, han kommer säkert att bli jättenöjd att han gjort rätt … Det blir ingen final, han hade behövt 2-3 poäng till, men det finns en möjlighet till nästa år, han går i 8:-an just nu.
Bra blogg/webbsida du har! Jag beställde just din bok, det såg intressant ut. Jag vet inte hur mycket jag har letat efter bra böcker som har med problemlösning att göra, kan knappt hitta något. Har du några andra tips? För åldern 14 och uppåt mot gymnasiet.
Hej!
Jag hoppas boken passar eleven :) Vissa uppgifter/lösningar kan vara obegripliga, men det finns ju nivåer. De enda böckerna jag känner till av svenska författare är listade här: https://sites.google.com/a/depath.com/hmt/home/problem/books
På engelska finns en del litteratur, t.ex. ”Problem-solving through problems” av Loren C. Larson.