Lösningar till SMT-kvalet 2014

Detta är de inofficiella (dagen-efter) lösningar till SMT-kvalet som hölls den 30:e september på gymnasieskolorna över hela Sverige. De officiella lösningarna kommer att komma upp på SMT:s hemsida.

Problem 1


Ett tåg kör fram och tillbaka dygnet runt mellan Aby och Bro med lika långa uppehåll vid ändstationerna, och med samma tidtabell alla dagar i veckan. Under varje resa stannar tåget endast en gång, vid Mo.

Jens åker med tåget från Aby, stiger av i Mo för att handla och återvänder till Aby när tåget nästa gång stannar i Mo. Hans uppehåll i Mo har då varat i 50 min. Jenny åker från Bro till Mo, och åker sedan hem nästa gång tåget stannar på väg mot Bro. Hennes uppehåll i Mo blir 30 min.

Hur många gånger stannar tåget i Mo under ett dygn? Vi bortser från den tid det tar för tåget att stanna till i Mo, samt antar att tåget är i rörelse vid midnatt.

Lösning

Puh, den första uppgiften testar om du kan läsa mycket text! :)

Vi noterar att under tiden Jens är i Mo, så hinner tåget åka från Mo till Bro, stå i Bro och sedan åka tillbaka från Bro till Mo precis. Under tiden som Jenny är i Mo, så hinner tåget att göra precis rester, det vill säga åka från Mo till Aby, stanna i Aby och sedan åka tillbaka från Aby till Mo. Eftersom vi antar att tåget inte spenderar tid i Mo, så utgörs hela cykeln av de två tiderna. Det vill säga, det tar 80 minuter för tåget att göra sin rutt.

Under dygnets 24*60 minuter hinner tåget göra rutten 24*60/80 = 18 gånger. Under varje rutt stannar tåget i Mo två gånger. Således blir det 36 stopp i Mo under ett dygn.

Problem 2

Medelvärdet av 12 reella tal är 20. Medelvärdet av de tal som är större än 20 är 27, medan medelvärdet av de tal som är mindre än 20 är 17. Visa att minst ett av de talen måste vara lika med 20.

Lösning

Vi antar motsatsen: Det finns inget tal bland de 12 som är lika med 20. Då utgörs talen av k stycken som är större än 20 och 12-k stycken som är mindre än 20.

Talens medelvärde är 20, alltså är alla talens summa lika med 20*12 = 240. De som är större än 20 har på samma sätt summan k*27 och de som är mindre har summan (12-k)*17. Således har vi:

20*12 = 27*k + 17*(12-k) = 17*12 + 10*k

3*12 = 10*k

3,6 = k

Motsägelse, eftersom k var ett antal. Alltså måste det finnas som minst ett tal som är exakt 20.

Problem 3

Pukterna P, Q, R, S väljs på sidorna av kvadraten ABCD, så att P ligger på AB, PBC, RCD och SDA, och så att sträckorna AP, BQ, CR, DS är lika långa. Punkten M inuti kvadraten ABCD är sådan att arean av fyrhörningen SDRM är 24 cm2, arean av RCQM är 41 cm2 och arean av QBPM är 70 cm2. Bestäm arean av fyrhörningen PASM. (Du kan ta för givet att det finns en punkt M som uppfyller villkoret.)

Lösning

Om AP = BQ = CR = DS, så är PB = QC = RD = SA, då kvadratens sida är lika med AP + PB = BQ + QC = CR + RD = DS + SA. Därför får vi, om vi drar linjerna PQ, QR, RS, SP, fyra kongruenta rätvinkliga trianglar på bilden (kongruensfall SVS till exempel).

Det betyder att PQ = QR = RS = SP, samt att alla vinklar i PQRS är räta, då de komplementerar två vinklar, vars summa är 90°. PQRS är således en kvadrat.

SMT_k14_3_1

Låt oss betrakta fallet då punkten M hamnar inuti kvadraten PQRS. Dra då de fyra höjderna från M mot den lilla kvadratens sidor. Höjdernas respektive längder betecknar vi med a, b, c, d. Notera att a + c = b + d, då dessa höjder bildar sträckor, parallella med kvadratens sidor. Alltså har summorna samma värde som längden av den inre kvadratens sida.

SMT_k14_3_10

Låt oss beteckna den inre kvadratens sida med x. Det betyder att vi kan uttrycka areorna av trianglarna MSP, MPQ, MQR, MRS:

\displaystyle S_{MSP} = \frac{a\cdot x}{2}
\displaystyle S_{MPQ} = \frac{b\cdot x}{2}
\displaystyle S_{MQR} = \frac{c\cdot x}{2}
\displaystyle S_{MRS} = \frac{d\cdot x}{2}

a + c = b + d får vi att:

\displaystyle S_{MSP} + S_{MQR} = S_{MPQ} + S_{MRS}

Då måste även

\displaystyle S_{PASM} + S_{RCQM} = S_{QBPM} + S_{SDRM}

då vi lägger på areor av två av de kongruenta trianglarna på båda sidor (gula på bilden).

SMT_k14_3_2

Alltså är arean av fyrhörningen PASM lika med 24 + 70 – 41 = 53cm2.

Men vad händer om punkten M ligger utanför den inre kvadraten? Egentligen fungerar exakt samma lösning, men man måste tillåta att vissa areor är negativa. Till exempel om M ligger inuti triangeln APS ligger, så betraktar vi längden av höjden a som ett negativt värde, liksom arean av triangeln MPS. Alla andra påståenden i vår lösningen gäller även med den modifikationen, alltså blir svaret i vilket fall densamma. Det vill säga 53cm2.

Problem 4

Sträckorna AP och BQ är höjder i triangeln ABC. Triangelns vinkel vid hörnet C är 100°. Punkten M är mittpunkt på sidan AB. Bestäm vinkeln PMQ.

Lösning

Eftersom triangeln är trubbvinklig går höjderna AP och BQ utanför triangeln och skär förlängningen av BC respektive AC.

SMT_k14_4_1

Om man ritar ut cirkeln med mittpunkten M och diametern AB, så kommer punkterna P och Q hamna på cirkelns rand, eftersom de står på diameter med räta vinklar. (Se randvinkelsatsen.) C hamnar inuti cirkeln, eftersom ACB > 90°

SMT_k14_4_2

Eftersom vinkeln ACB är 100°, så är komplementvinkeln ACP lika med 80°. Det betyder att vinkeln CAP är lika med 10°, då vinkeln APC är rät. På samma sätt är CBQ = 10°, fast det kommer vi inte att använda.

SMT_k14_4_3

Dags att använda radvinkelsatsen igen! Då vinklarna PAQ och PMQ står på samma båge, men den första är en randvinkel medan den andra är en centralvinkel, så följer det att PMQ är dubbelt så stor, det vill säga lika med 20°.

SMT_k14_4_4

Problem 5

I en skolklass får en elev en påse med 2014 enkronor från läraren medan de övriga eleverna inte har några pengar alls. Varje gång två elever träffas delar de pengarna de har tillsammans lika om det är ett jämnt antal kronor, medan de lägger en krona i klasskassan och delar lika på resten om de har ett udda antal kronor tillsammans. Efter lång tid har detta hänt många gånger och det visar sig att alla pengarna ligger i klasskassan. Hur många elever måste det minst ha varit i klassen?

Lösning

Det gäller att komma på ett svar, visa att händelsen var möjlig vid det svaret, samt förklara varför ett mindre antal elever aldrig skulle fungera.

Mitt svar är 12 elever. Låt oss ställa dem på rad, med eleven med 2014 kronor först. Därefter delar första och andra eleven på pengarna, andra och tredje, tredje och fjärde och så vidare upp till att tionde och elfte delar på pengarna. Vi får efter det följande mängder hos eleverna (och några kronor ligger i klasskassan):

1: 1007 kr
2: 503 kr
3: 251 kr
4: 125 kr
5: 62 kr
6: 31 kr
7: 15 kr
8: 7 kr
9: 3 kr
10: 1 kr (precis innan hade hen 3 kr)
11: 1 kr (precis innan hade hen 0 kr)
12: 0 kr

I denna situation kan elev 10 och elev 11 bli av med pengar genom att dela dem med elev 12, en i taget.
På så vis ”försvann” 3 kr från en elev med hjälp av två andra elever som hade 0 kr. Därför är det möjligt, att i flera steg få bort 3 kr från elev 9 (eftersom det finns minst två elever med 0 kr). Notera att elev 9 hade 7 kr innan hen delade med sig för första gången vidare i raden. Därför har vi ett sätt att bli av med 7 kr med hjälp av tre ”tomma” elever. Därför kan vi bli av med elev 8:as 7 kr också.

Vi fortsätter på samma sätt tills elev 1 är den enda som har pengar (1007 kr) kvar. Hen kan bli av med dem (mha av de andra tomma eleverna), eftersom elev 2 kunde göra det. Alltså kan man bli av med alla pengar i det här fallet.

Varför räcker det inte med 11 elever?

Notera att i en situation då vi har en mängd elever som kan göra operationerna med varandra, och då alla har åtminstone m mynt, kommer ingen nånsin att kunna få färre än m mynt. För det skulle krävas att man delade som mest på 2(m – 1) + 1 = 2m – 1 mynt, men det är mindre än vad två godtyckliga personer i mängden har tillsammans.

Om klassen hade haft två personer skulle de bara kunna ha 1007 mynt var och inte kunna minska på den mängden. Vi ska visa att om tre personer får byta så kommer var och en att ha som minst 503 kr, om fyra personer får byta så kommer de ha som minst 251 kr var och så vidare. Om 11 personer får byta kommer de alltid ha som minst 1 kr var. Då kommer vi att ha visat att inte alla pengar kan hamna i kassan.

I fallet med tre personer, titta på när den sista personen blir involverad för första gången. Hen delar då pengar med en person som har minst 1007 kr (enligt vad vid visade om två personer). Den själv har 0 kr, alltså kommer de efter delningen att få minst 503 kr var. Nu har alla tre personerna minst 503 kr (den som inte var med om den sista delningen har minst 1007) och kan inte få färre.

På samma sätt går vi steg för steg (eller med induktion) och betraktar då k+1 personer får vara involverade. När den sista av dem gör sin första delning så blir dess minimum hälften av minimum för k personer, avrundat neråt. Ingen annan har mindre än det minimivärdet. Således har vi visat att minsta antal kronor hos varje person bland 11 är 1 kr (och med färre personer ännu större), det vill säga de fallen fungerar inte för att bli av med hela kassan.

Problem 6

Låt a och b vara två positiva heltal sådana att 8a2 + 2a = 3b2 – b . Visa att både 2a + b och 4a – 2b + 1 är kvadrater av heltal.

Lösning

Min lösning var inte världens snyggaste från början, men här en så kallad ”kammad” lösning. Det vill säga onödiga steg har tagits bort. Låt dig inte luras av att lösningen är kort, det tog några försök att komma fram till den.

Låt oss multiplicera de talen vi ska visa vara kvadrattal:
(2a + b)(4a – 2b + 1) = 8a2 – 2b2 + 2a + b = (8a2 + 2a) + (- 2b2 + b)

Den första termen kan vi ersätta med 3b2 – b så som det är givet av villkoret i uppgiften:
(2a + b)(4a – 2b + 1) = (3b2 – b) + (- 2b2 + b) = b2

Så vi vet att produkten av talen är ett kvadrattal i alla fall.

Notera att ett kvadrattal har alltid ett jämnt antal av samma primfaktorer i sin primtalsfaktorisering, så det lönar sig att titta på något primtal p, ta något sådant som ingår i faktoriseringen av både 2a + b och 4a – 2b + 1. Det implicerar att b2 är delbart med p ocskå. Eftersom p är ett primtal, så måste även b vara delbart med p.

Om både 2a + b och b är delbara med p, så är 2a det också. Låt oss nu titta på 4a – 2b + 1 igen: 4a är delbart med p, b är delbart med p, alltså ger talet rest 1 vid division med p. Detta ger motsägelse, alltså kan inte 2a + b och 4a – 2b + 1 har gemensamma primfaktorer. De är alltså relativt prima.

Det innebär att varje primfaktor som b2 har i faktoriseringen (ett jämnt antal gånger) antingen ingår helt i ena talet eller det andra. Det innebär att vart och ett av talen har alla primfaktorer i jämna potenser och alltså är kvadrater av heltal.

Vill du få extrainfo om problemlösning via e-post från Mattebloggen?

Det kan vara allt från problemlösningstips till info om olika tävlingar. Din e-postadress kommer att hanteras varsamt.

Namn

E-post

2 reaktioner till “Lösningar till SMT-kvalet 2014”

  1. Ursäkta r:et i förra kommentaren, jag tryckte fel.

    Ett alternativt uppslag till 3:an. Betrakta trianglarna som fås genom att sammanbinda M med punkterna på kvadraten. Man inser t.ex. att

    area(APM)+area(CRM)=sträcka(AP)*kvadratens sida/2

    och

    area(ASM)+area(CQM)=sträcka(AS)*kvadratens sida/2

    varför dessa areor tillsammans är halva kvadratens. Därav fås

    sökta area + 41=70+24

    Detta undviker ”problemet” med M:s placering.

    Vill också passa på att tacka för din trevliga sida. Jag har hämtat flera problem och idéer härifrån.

  2. Ah, det var ju väldigt snyggt förslag, tack!

    :) Varsågod och fortsätt gärna att hämta material härifrån.

Lämna ett svar

Denna webbplats använder Akismet för att minska skräppost. Lär dig hur din kommentardata bearbetas.

© 2009-2025 Mattebloggen