Mattegåta
I ett visst spel används mynt som är värda 1, 15 och 50 Hello Kitty-dollar. En spelare köpte ett svärd och fick i växel ett mynt fler än vad han betalade. Vilket är det minsta antalet dollar som svärdet kunde kosta?
Roligare matematik
Tävlingsmatematik, främst för elever på högstadiet och gymnasiet samt alla nyfikna.
I ett visst spel används mynt som är värda 1, 15 och 50 Hello Kitty-dollar. En spelare köpte ett svärd och fick i växel ett mynt fler än vad han betalade. Vilket är det minsta antalet dollar som svärdet kunde kosta?
I tio likdana kannor finns lite mjölk: varje kanna är full till max 10%. En tillåten operation är att ta en valfri kanna och hälla av en del av mjölken till de andra kannorna (lika mycket till varje övrig kanna).
Visa att 10 operationer räcker för att få kannorna att innehålla exakt lika mycket mjölk.
Visa att varje andragradspolynom kan skrivas som en summa av två andragradspolynom, vars diskriminanter är lika med 0.
En diskriminant för ett andragradspolym Ax2+Bx+C är lika med
B2 – 4AC
Diskriminanter används för att bestämma ifall det finns lösningar för en given andragradsekvation och sedan beräkna dessa lösningar. Diskriminanten större än 0 ger två unika reella lösningar, lika med 0 ger en unik lösning, medan om diskriminanten är mindre än 0 så har ekvationen inga reella lösningar.
En chokladtårta är rektangelformad och sju personer ska dela på den. På tårtan finns 7 marsipanrosor:
Hur kan man dela tårtan i sju delar så att det finns en ros i varje del, om man bara får skära tårtan tre gånger och skärningarna måste vara raka linjer? Observera att delarna inte behöver vara lika stora.
Ett biljardbord har en långsida som är dubbelt så lång som kortsidan. I varje hörn finns det ett hål, samt två hål till finns på varje långsidas mitt.
Vilket är det minsta antalet bollar som man kan placerat ut på bordet så att varje hål befinner sig på samma linje som ett visst par av bollar? (Bordet är rektangulärt, hål och bollar antas vara lika stora som punkter.)
En mörk eftermiddag hade ett gäng studenter samlats för att kolla på – ni gissade rätt – Futurama! Ljuset släcktes, stora platt-teven slogs på och alla förberedde sig för att mysa under filtarna till favoritserien.
Det kanske bör nämnas att rummet de satt i hade en stor whiteboard, och att studenterna pluggade matematik …
Så vad händer när halva serien har gått? Jo, ljuset är på, avsnittet pausat och flera personer står och skriver egna siffror på tavlan. Varför?
Ni förstår nog om ni tittar på avsnittet ”The Prisoner of Benda” (säsong 6, episod 10) själva. Det innehåller nämligen ett kombinatoriskt problem som är väldigt viktigt för karaktärerna att lösa!
Varning: handlingen spoilas lite nedan!
Professorn uppfinner nämligen en maskin, som kan byta plats på medvetanden hos två människor (detta åskådliggörs genom att varje kropp får den andra kroppens röst).
Professorn och Amy byter plats, för att han vill en stund kunna leva i ett ungt kropp igen medan hon vill kunna äta lite extra. Men när de vill byta tillbaka så går det inte! Maskinen låter inte två kroppar byta med varandra igen om de någonsin har bytt förut!
Bender tror att han hjälper till att lösa problemet och byter sitt medvetande med Professorns (och får då Amys kropp). Nu börjar det bli ganska rörigt eller hur?
Så hur ska våra vänner komma tillbaka till sina egna kroppar? Kom ihåg att inga två kroppar får byta medvetanden med varandra fler än en gång.
Saker kompliceras ytterligare sedan i avsnittet genom att fler och fler par personer byter. Hur löses problemet i allmänhet om en grupp på n personer har trasslat till sig genom en massa byten? Vilket blir det minsta antalet byten för att återställa allt?
Så när du kollar på avsnittet, bli inte förvånad om någon vill pausa mitt i och ta fram papper och penna, om du har en gåtälskare i sällskapet.
Martin samlar på ovanliga mynt. Mynten i hans samling alla har en diameter på högst 10 cm. Samlingen förvarar han i en låda som har storlek 30 cm x 70 cm (i ett lager, inga mynt ligger ens delvis ovanpå varandra).
Men nyss fick Martin ett nytt mynt med en diameter så stor som 25 cm. Visa att den nya samlingen får plats i en låda som är 55 cm x 55 cm stor (också nu i ett lager).
Tre vänner har ett företag ihop. Deras efternamn är Eriksson, Karlsson och Nilsson. En av dem är VD, en är sekreterare och en är kassör. Sekreteraren har inga syskon och han är den yngste på företaget. Nilsson är äldre än kassören och är gift med Erikssons syster.
Bestäm VD:ns, sekreterarens och kassörens respektive efternamn.
© 2009-2024 Mattebloggen