Hur man håller ett bra föredrag

Förra veckan befann jag mig på en mattekonferens i Glasgow. Temat var kategorifikationer, så ni kan gissa att de flesta av föredragen var ganska svåra. Det hände mer än sällan att jag bara förstod en liten del eller inte något alls.

Det lustiga är dock att det till en väldigt stor del beror på hur föreläsaren lägger upp presentationen och till en inte så stor del på innehållet. Själv har jag hållit i färre föredrag än det finns fingrar på min vänstra hand, men lyssnare har jag varit på många fler än vad jag kan minnas.

Så jag tänkte ge en lyssnares perspektiv på det hela. Eventuella föredragshållare som läser detta får betrakta listan som tips för eventuell förbättring.

Låt oss dock enas om att föredragen i fråga är inte för allmän publik, det vill säga snarare om något expertområde. Det kan vara en specialföreläsning för studenter, något för temadagen på högstadieskolan, men absolut inte något politiskt tal till exempel. Föredraget hålls för större publik, säg 15 personer eller fler, som kan ha mycket olika bakgrund men är intresserade av föredragets ämne (alternativ finner titeln spännande). På förhand känner föredragshållaren inte till alla i publiken.

På vilket sätt undviker man att göra det för lätt, för svårt eller med för hög sömnfaktor?

1. Förebered innehållet. Förhoppningsvis vet du på förhand vad du vill säga. Det märks tydligt om talaren kan sin sak väl och föredraget flyter smidigare om så är fallet. Skriv ner precis allt du ska säga tydligt på stödpapper, om du skall använda tavlan, i annat fall är det fördelaktigt att skippa anteckningar.

2. Planera tiden. Det är mycket vanligt att tiden tar slut innan du hunnit berätta allting. Ett sätt att undvika detta är att repetera föredraget högt själv eller framför testpublik och se hur lång tid det tar. Sedan lägg på en tredjedel av den tiden för eventuella frågor. Om det ändå blir tidsbrist när du väl gör det på riktigt, var inte rädd att avsluta tidigare än du tänkt. Visst vill man kanske förmedla något väldigt viktigt, men det kan göra mer skada än nytta när publiken ändå är för trötta för att lyssna. Tycker de att föredragets början var spännande, kommer de kanske själva komma fram och fråga det som intresserar dem efteråt. Kom ihåg att föredraget är till för publiken.

3. Presentera idén. Det finns något viktigt i det du har att säga. I matematiken är det ofta någon idé som tillämpas under föredraget. Börja gärna med att säga några ord om vad du vill förmedla och vad som är största poängen i det som kommer. Nämner man inte det alls är det stor risk att många förlorar sig i de tekniska detaljerna och då inte tar till sig idén.

4. Använd illustrationer. Säg att du använder tavlan. Kom ihåg att ”en bild säger mer än 1000 ord” och försök att vid varje tillfälle ha åtminstone en bild eller ett diagram någonstans på tavlan. Annars tilltalar inte föredraget människor med visuell förståelse. Samma sak om du använder overhead (eller powerpoint) – ha sliden liggande och synlig i åtminstone 3 minuter. Rita gärna på overheadslides eller ha stegvis uppbyggande av powerpointsidor, då ser åskådaren hur bilden skapas och mycket lättare kan följa talarens tankegång. Notera också att inte bara bilder kan vara bra illustrationer, även exempelvis vardagsberättelser kan illustrera en poäng.

5. Tala till publiken. Som sagt, du föreläser inte för tavlan, golvet eller väggen, utan för publiken. Vanan att titta på lyssnarna när man talar kommer naturligt med erfarenheten. Ögonkontakten inbjuder åskådarna till mer interaktion, som till exempel att ställa frågor.

6. Undvik sidospår. Det händer att man kommer på något extra att säga eller upptäcker ett sätt att förklara något extra noga. Inget fel i sig, men lyssnarna har (förhoppningsvis) mycket ny information att ta till sig redan. Kräver något i ditt föredrag mycket förkunskaper, är det ingen idé att försöka gå igenom dem ”lite snabbt”. Antingen kan personen som lyssnar det eller inte och på kort tid går det inte att få full förståelse. Förklara det svåra i ett par meningar och i stora drag, unvik exakta definitioner och formuleringar.

7. Ha en röd tråd. Påminn om idén från punkt 3 genom hela föredraget. Återknyt det du har berättat till din början, på så sätt blir poängen tydliga. Berättelsen blir också mer växlande: från fördjupande till övergripande. Sammanfatta gärna i slutet vad det är du egentligen har berättat om, tyvärr blir detta sällan gjort på grund av brister i tidsplaneringen,

8. Använd humor, men inte för mycket. Humor kan användas för att väcka upp folk som börjat tänka på annat. Föredrag brukar ha stort kunskapsvärde men inte så högt underhållningsdito. Å andra sidan kommer du inte uppfattas som seriös föredragare om du skämtar för mycket. Ungefär tre roliga meningar eller illustrationer per timme rekommenderas. Som i alla andra sammanhang, var positiv, du har då större chans att nå ut till dina lyssnare.

Klassiska bevis: Monges sats

Om du precis har börjat intressera dig för matematik, då säger jag grattis! Du kommer att bli fascinerad av problem, teorier och bevis många gånger!

Det är inte lika lätt om man fått matematiken serverad på ett guldfat sedan barnsben (eller tonårsben). Ju längre tid som går, desto mer måste man lära sig för att bli imponerad av något nytt tankesätt. Men som pris får man oftast upptäcka något ännu mer fascinerande än förra gången.

Ett av de här tillfälen var jag med om när jag för första gången besökte Uppsala. Det var någon gång vid årsskiftet 2001/2002 och jag gick i ettan på gymnasiet och kunde förstås inte så mycket om universitetsmatematik. Vilket i och för sig inte behövs för historien. Men snart får ni se hur allt ändå hänger ihop.

Vi fick sitta i ett klassrum och en matematiker berättade följade problem för oss.

Tre olika cirklar ligger i planet och de skär inte varandra (och ligger inte inuti varandra heller). För varje par av cirklar dra två linjer, som tangerar båda två cirklarna. Om cirklarna är olika stora, kommer dessa två linjer att skära varandra. Frågan är nu: kommer de tre erhållna skärningspunkterna att ligga på samma linje?

monge

Det visar sig att de måste. Försök att lösa problemet med den geometrin du kan. Det verkar vara svårt att visa, genom att bara rita linjer och bestämma vinklar i planet.

Däremot finns en elegant lösning, som använder sig utav en tredje dimension!

Varför och hur?

Det är en väldigt imponerande idé, att gå högre upp än vad som verkar behövas. Om problemet inte kan lösas, så skall man försöka att titta på det ur en annan synvinkel. Men oftast ligger svårigheten i att välja rätt synvinkel.

Just att gå upp i högre dimensioner visade sig vara nyttigt även i andra vetenskaper. Mycket förklarades av insikten om att jorden är sfärisk, extra dimensioner behövs för att strängteorin skall hålla. Även min forskning handlar om att förstå enklare strukturer genom att titta på de mer kompilcerade. Men hur hjälper den tredje dimensionen i vårt problem?

Föreställ er att det inte är cirklar, utan klot som ligger på ett plant papper, då ser det hela precis ut som på bilden om vi kollar uppifrån. Linjerna är fortfarande linjer, men i rymden kan vi faktiskt konstruera oändligt många linjer som är gemensamma tangenter till två av kloten. Alla dessa gemensamma tangenter bildar en kon, som har sin spets i papprets plan. Spetsen är då även skärningspunkten för de ursprungliga två linjerna.

Men om det finns tre kulor, så är det inte bara så att alla kan läggas på ett papper, vi kan lägga ett plant papper ovanpå dem också! Det pappret tangerar alla kloten, och det har lika mycket rätt att innehålla konspetsarna som det undre planet hade.

Således finns konspetsarna, det vill sägga de erhållna tre punkterna i båda planen. Och två plan skär varandra i en linje! Alltså ligger punkterna på en och samma linje.

Nu kan vi alltså glömma bort hela tredje dimensionen-grejen. Vi har visat att de tre punkterna ligger på samma linje i det tvådimensionella planet.

Här kan ni även titta på en film som illustrerar lösningen.

Mattecirkel med Anna: lektion 2

Här är ett smakprov av vår andra lektion, som handlar om att väga saker på en balansvåg och avgöra om de är lätta, tunga, falska etc. Här nedan ser ni några av lektionens svåraste problem. 

lektion2

Nu kan man försöka analysera vad det är egentligen som lärs ut på mattecirkeln. På sätt och vis är lektionerna mycket mer lika spel än någon annan undervisningsform. Mycket görs på egen hand och man ”levlar” när problemernas svårighetsgrad ökar. Samtidigt används det man samlade på sig under tidigare ”levels” (lättare problem).

En bra lektion lär ut idéer. Den här lektionen lärde inte ut någon specifik idé, utan var en härlig blandning av olikheter, informationsteori, falluppdelning och kombinatorik. Som inte i sig är metoder, utan just idéer till lösningar. Jag avslutar med ett citat:

What is the difference between method and device? A method is a device which you used twice.

–George Pólya, ”How to solve it”

Mattecirkel med Anna: lektion 1

Jag har precis börjat mattecirkeln med Anna, en elev som nu går i nian i Uppsala.

Det är många som frågat mig vad ”mattecirkel” egentligen betyder, för det känns kanske lite dumt att kalla någonting för ”cirkel” när bara två personer träffas. Men jag väljer det namnet av en gammal vana, och för att det är en sorts studiecirkel oavsett hur många som kommer.

Mattecirklar är en gammal tradition i Ryssland och en ganska ny i Sverige. I de flesta fall är det träffar med några stycken elever, som kan ungefär lika mycket matte, och en lärare. Varje sådant tillfälle tar 1-2,5 timmar, lite beroende på elevernas åldrar.

Dessutom för att få lite struktur på det hela brukar lektionerna ha en genomgående tema. Kanske att det handlar om trianglar eller kanske om induktionsprincipen. Målet är att eleven ska förstå en viss idé och prova lite på tekniken genom att lösa problem ur en lista.

Här är lite smakprov vad Anna sysslade med i lördags, temat var ”Uppskatta och ge exempel”. Alla problem kräver förstås förutom svar också motivering. Vill ni ha fler problem från lektionen (de nedan är de lättaste), så är det bara att maila till mig eller skriva i kommentarerna.

lektion1

© 2009-2025 Mattebloggen