Problem vecka 18

Cirkelkonstruktion (2 poäng).
Du har en passare, som du kan rita cirklar med (så länge du känner till cirkelns mittpunkt och dess radie) samt en ograderad linjal, som du inte kan mäta något med, men som du kan rita en linje med genom två valfria punkter.

Du har fått ett papper där en cirkel c är ritad (och dess mittpunkt är markerad) och där en punkt A utanför cirkeln är markerad.

Hur kan du med hjälp av dina verktyg rita en ny cirkel, som har A som mittpunkt och som precis tangerar den redan ritade cirkeln c? Bevisa att din konstruktion ger korrekt resultat.

Cosinussumman (5 poäng).
Visa att ifall summan av cosinusar på vinklarna hos en fyrhörning är lika med 0, så måste fyrhörningen antingen vara cyklisk, en parallellogram eller ett parallelltrapets.

Visa lösningar

Problem vecka 17

Nötter (1 poäng).
I tre högar finns 22, 14 respektive 12 nötter. Du får göra tre förflyttningar, så att högarna får lika många nötter. Under en förflyttning får du flytta ett antal nötter från en hög till en annan, men antalet nötter man flyttar måste vara lika med antalet nötter i högen man flyttar till. Vilka förflyttningar ska du göra?

Äpplen (3 poäng). Några lådor innehåller sammanlagt 2000 äpplen. Du får antingen ta bort lådor eller ta bort äpplen från lådor. Visa att du kan med hjälp av sådana operationer få kvar lådor med samma antal äpplen i varje, så att det sammanlagt finns minst 100 äpplen kvar.

Visa lösningar

Problem vecka 16

Hexagonen (1 poäng).
Fyll i rutorna i ”hexagonen” nedan med heltalen från 1 till 19, så att summan av talen i varje kolonn och i varje diagonal blir densamma. Varje tal får utnyttjas exakt en gång, och vissa tal är redan på sin plats:

Siffersumman (3 poäng). Hitta alla tal som är 12 gånger större än sin siffersumma.

Visa lösningar

Problem vecka 15

Papper (3 poäng).
Man tog ett rektangulärt papper och vikte ihop det så att ena hörnet hamnade i mitten på kortsidan (se bilden). Det visade sig att trianglarna I och II var kongruenta.

Hur lång var papprets långsida om kortsidan var 8 cm lång?

Brickor (7 poäng). En kvadrat med storlek 6×6 ska övertäckas med 12 brickor (utan hål och överlapp). Vissa brickor (k stycken) får vara vara ”hörn” bestående av tre rutor och resten (12-k brickor) måste vara tre rutor stora rektanglar.

För vilka k är uppdelningen möjlig?

Visa lösningar

Problem vecka 14

Fången (2 poäng).
Kungen tänker på tre stycken tvåsiffriga tal: a, b och c. Fången måste hitta på tre tal själv och säga dem högt: X, Y och Z. Därefter säger kungen högt summan aX+bY+cZ. Då måste fången gissa rätt på vilka tre tal kungen tänkte från början, annars blir han avrättad.

Vilka tal X, Y och Z ska fången säga för att behålla livet?

Speciellt tal (5 poäng). Existerar det ett naturligt tal, som är större än 101000, som inte är delbart med 10 och som har åtminstone två olika siffror, och om man byter plats på dessa två siffror så förändrar inte talet mängden av sina primtalsdelare?

Visa lösningar

Problem vecka 13

Kaniner (1 poäng).
En kaninmamma köpte 7 olika stora trummor och 7 olika stora trumpinnar-set åt sina 7 kaninbarn. Om en kanin ser att någon av syskonen har både mindre trumma och mindre trumpinnar, börjar den slå på trumman väldigt högt. Annars sitter kaninen tyst.

Vad är det största antalet kaniner som kan trumma högt?

Staket (3 poäng). I en liten stad finns 100 hus. Man får bara bygga slutna staket som omringar åtminstone ett hus. Olika staket får inte korsa varandra. Man får aldrig bygga flera staket som omsluter samma samling av hus.

Vilket är det största antalet staket som kan finnas i staden?

Visa lösningar

Problem vecka 12

Syskon (1 poäng). I en familj finns sex barn. Fem av barnen är 2, 6, 8, 12 respektive 14 år äldre än det minsta barnet. Alla åldrarna i familjen är primtal. Hur gammalt är det minsta barnet?

Primtal

Ett primtal är ett positivt heltal som har exakt två delare: 1 och talet självt.

Till exempel är 2, 3, 5 och 7 primtal.

Men 1, 4, 6, 8 och 9 är inte primtal: 1 har endast en delare (1), 4 har tre delare (1, 2, 4), 6 har fyra delare (1, 2, 3, 6), 8 har fyra delare (1, 2, 4, 8) och 9 har tre delare (1, 3, 9).

Sannolikheter (3 poäng). Två vänner singlar slant: den första singlar 10 gånger och den andra singlar 11 gånger. Hur stor är sannolikheten att den andra vännen får klave fler gånger än den första vännen?

Visa lösningar

Problem vecka 11

Nu kommer de svåraste problemen hittills! Nästa vecka återkommer jag till normal svårighetsgrad.

Skicka in lösningsförslag genom att klicka på länken under uppgifterna senast måndagen den 28 mars. Glöm inte att kolla reglerna och aktuella poängställningen.

Punkter (3 poäng). Sätt ut så många punkter på ett papper som möjligt, på så sätt att ingen trippel av punkter ligger på en och samma linje, utan utgör hörn till en likbent triangel. Du behöver inte bevisa att det inte går att sätta ut fler punkter med samma egenskap.

Likbent triangel

En likbent triangel är en triangel med två lika stora vinklar. En ekvivalent definition är att det är en triangel som har två lika stora sidor.

Här är några exempel:
Likbenta trianglar
Notera att en liksidig triangel är också likbent.

Trasig våg (7 poäng). Du har 32k mynt som ser likadana ut, men bland dem finns ett falskt mynt som väger lite mindre än alla andra. Du har också tillgång till tre balansvågar (varje balansvåg har två skålar). Du vet att två vågar är i gott skick, men en är trasig och du vet inte vilken det är. Den trasiga vågen kan visa både jämvikt och ojämvikt åt ena eller andra hållet oberoende av vad du lägger på skålarna.

Hur bestämmer du vilket mynt som är falskt på 3k+1 vägningar?

Visa lösningar

Problem vecka 10

Skicka in lösningsförslag genom att klicka på länken under uppgifterna senast måndagen den 21 mars. Glöm inte att kolla reglerna och aktuella poängställningen.

Blommor (2 poäng). Längs med vägen mellan Kalles och Kajsas stugor växte blommor på rad: 15 prästkragar och 15 tussilago huller om buller. När Kajsa var på väg till Kalle, vattnade hon alla blommor i rad. Men efter den 10:e tussilagon tog vattnet slut och 10 blommor förblev ovattnade.

Nästa dag gick Kalle hem till Kajsa och plockade blommorna i rad. Efter den 6:e tussilagon tyckte han att buketten var lagom stor. Hur många blommor fick växa kvar längs med vägen?

Familjealbum (5 poäng). I ett familjealbum finns 10 foton. Varje foto föreställer tre personer: i mitten står en man, på hans vänstra sida har han sin son och på hans högra sida har han sin bror.

Alla männen som står i mitten är olika personer. Vilket är det minsta antalet olika människor som kan finnas på bilderna i albumet?

Visa lösningar

Problem vecka 9

Skicka in lösningsförslag genom att klicka på länken under uppgifterna senast måndagen den 14 mars. Glöm inte att kolla reglerna och aktuella poängställningen.

Rebusen (1 poäng). Försök att läsa av ordet genom att använda nyckeln:
Rebus

Schackcirkeln (3 poäng). Det finns ett vanligt schackbräde med storleken 8×8. Hur stor radie har den största cirkeln man kan rita, som bara går igenom svarta rutor (det vill säga cirkelns rand finns aldrig i de vita rutornas inre)? Visa varför det inte går att hitta en större sådan cirkel.

Visa lösningar

© 2009-2024 Mattebloggen