Tips inför SMT-final

Som vanligt lite sent kommer det några tips inför morgondagens tävling! De allmäna tävlingstipsen gäller förstås fortfarande.

Saker som är bra att kunna inför finaltävlingen utöver det man ska kunna inför kvaltävlingen:
– Triangelolikheten
– Största sida ligger mittemot största vinkeln i en triangel, minsta mittemot minsta
– Bisektrissatsen och förhållandet i vilken medianernas skärningspunkt delar medianerna
– Homoteti och inversion (om du är proffs och kan allt annat :))
– Linjens ekvation
– Vad polynom är för något, faktorisering och division med rest
– Grundläggande sannolikhetsteori
– Diofantiska ekvationer
– Grundläggande kombinatorik

Bevistekniker som är bra att kunna inför tävlingen:
– Induktion
– Insättning av specialfall i funktionalekvationer och härledning av fukntionens egenskaper (jämn, udda, linjär, kvadratisk etc.)
– Invarianter och halvinvarianter

Problemen i finalen är svåra, men det handlar framför allt att komma på finurliga lösningar och inte särskilt mycket om att kunna matematiska termer. Mitt största råd är att koncentrera sig på problemen där man har fullt koll på matematiken. Försök på alla problemen litegrann, men försök seriöst på ungefär fyra av problemen. Ibland krävs helt enkelt en timmes koncentration för att komma på en lösning!

Och sist men inte minst: lycka till!!!!!

Vill du få extrainfo om problemlösning via e-post från Mattebloggen?

Det kan vara allt från problemlösningstips till info om olika tävlingar. Din e-postadress kommer att hanteras varsamt.

Namn

E-post

Tips inför SMT-kval

Nu är det bara några timmar kvar till SMT-kval och jag tänkte dela av mig med mina tävlingstips.

Allmänna tävlingstips:
– Ha skoj! Det här är bara en tävling.
– Slösa inte bort tiden, fem timmar kan gå väldigt fort! Gör ett gott försök att lösa varje problem, men spendera inte mer än en halvtimme om du inte kommer nånvart.
– Läs problemtext noga. Det är bättre att ställa en fråga till läraren än att försöka lösa ett annat problem än det som står.
– Om du tror att du har löst uppgiften, läs texten noga igen. Skriv ner lösningen direkt. Eventuella fel eller obevisade påståenden brukar dyka upp först när du skriver ner resonemanget.
– Bara ett svar ger oftast 0 poäng, men en ofullständig lösning kan ge upp till 6. Skriv alltså ner alla idéer du har på problemen tydligt. Om du har en plan för lösningen, men inte kan bevisa alla stegen, skriv ner planen.

När du inte har någon aning om hur du ska lösa uppgifterna, finns det några olika tekniker du kan prova:
– Undersök ett enkelt fall av problemet. T.ex., om det handlar om en 8×8-kvadrat, prova att göra samma sak med en 4×4-kvadrat eller även 2×2.
– Kolla specialfall. Svaren kan t.ex. vara olika för jämna och udda n. Prova att sätta in några tal och se om du upptäcker samband eller mönster. Om det är en funktionalekvation, stoppa in 0 iställer för x och sedan ocskå 1, -1, 2, -2, -x.
– Är det en geometriuppgift, rita figuren så nogrannt som möjligt! Då kan du t.ex. “se” vad svaret ska bli för något. Och om du vet svaret, t.ex. att en vinkel ska vara lika med 45 grader, blir det lättare att bevisa det.
– Kom ihåg att olika bilder kan uppstå i geometriuppgifter. Ett missat fall (t.ex. en punkt ligger inuti en cirkel och du har bara kollat när den är utaför eller på) kan ge avdrag.
– Att rita en bild underlättar även lösning av uppgifter, som inte är geometri.
– Anta saker “utan inskräkning” så att det blir lättare att jobba med problemet. T.ex. i en olikhet som är symmetrisk med avseende på a, b och c (det vill säga att man kan byta plats på två av bokstäver och olikheten förblir densamma) kan man anta att a>=b>=c.

Lite saker bör du kunna för att lösa många av uppgifterna:
– Hur man faktoriserar tal i primtal. Delbarhetsprinciperna för 2, 3, 4, 5, 9 och 11.
– Uppställning för aritmetik för tal i bas tio (dvs talteoriproblem som handlar om siffror löses med att kolla på sista siffran först etc.)
– Olikheten mellan aritmetiska och geometriska medelvärdet och några relaterade olikheter (t.ex. a+1/a>=2 för positiva a). De flesta olikheterna går ut på att man ska få “nånting i kvadrat >= 0”.
– Sinussatsen och cosinussatsen.
– Pythagoras sats.
– Likformighet.
– Randvinkelsatsen.
– Inskrivna (cykliska) fyrhörningar.
– Hur man räknar ut arean för olika figurer.
– Eventuellt de tredimensionella kropparnas volym.
– Lådprincipen.

Det är allt jag kan tänka ut på rak arm. Har du några tips?