Klassiska bevis: Randvinkelsatsen

Många har hört talas om den beryktade randvinkelsatsen. Eventuellt har du träffat på den på gymnasiet. Men få har egentligen koll på hur man bevisar satsen.

Om du vill komma fram till beviset själv med hjälp av några ledande uppgifter, se Cirklar och randvinklar. Annars läs vidare här.

Sats (Randvinkelsatsen)

Markera tre olika punkter A, B och C på en cirkel. Markera även cirkelns mittpunkt O. Då är vinkeln AOC dubblet så stor som vinkeln ABC.

Bevis

Man ska vara väldigt försiktig och rigorös med geometriska bevis. Med det menas att alla möjligheter för bildens utseende ska undersökas, om man nu ska rita någon bild överhuvudtaget.

Så till exempel, kan det se ut så här:

Så hur ska man täcka alla möjligheterna på ett bra sätt? Det beror förstås på vad man tänker baser beviset på.

Oftast betraktas bilderna som väsentligen olika om olika skärningar mellan linjerna äger rum. I bevisen grundar vi ofta resonemang på hur olika objekt ligger i förhållande till varandra och inte så mycket på storlekarna på vinklar, cirkelbågarna etc.

Med detta sagt väljer vi således att betrakta tre fall (som täcker alla möjliga situationer):

Fall I Fall II Fall III

Fall I: Vinkel AOC ligger helt inuti vinkeln ABC.
Fall II: Detta är specialfallet då vinkeln AOC delar sida med vinkeln ABC.
Fall III: Två av vinklarnas sidor skär varandra.

Fall II

Detta fall verkar vara enklast, så vi börjar med det. OB=BC för att de är radier, så \triangle COB är likbent. Alltså gäller \angle OBC = \angle OCB.

\angle AOC + \angle BOC = 180\textdegree men också \angle OBC + \angle OCB + \angle BOC = 180\textdegree.
Då måste \angle AOC = \angle OBC + \angle OCB = 2\angle OBC. Vilket skulle bevisas.

Fall I

Första fallet då? Vi ”fuskar lite” och drar en hjälplinje. Men nu får vi egentligen Fall II igen! Tillämpa det på varje halva av bilden och addera.

Fall III

Fall III måste väl vara svårare? Inte då! Vi ”fuskar” och drar en hjälplinje igen. Vi får återigen på grund av Fall II att 2\angle DBA=\angle DOA och att 2\angle DBC=\angle DOC. Subtrahera det andra resultatet från det första och vi är klara!

Matteproblem vecka 23

En tärning låg på bordet. Den flyttades ett steg i taget genom att rullas över på en ny sida (som gränsade till sidan som nyss var i kontakt med bordet). Till slut hamnade tärningen på samma plats som i början med samma sida uppåt. Kunde den översta sidan vrida sig 90 grader i förhållande till startläget?

Lösning till problem vecka 21

På dataskärmen står ett tal, som varje minut ökar med 102. Från början står det 123. Programmeraren Daniel kan när som helst ändra ordningen på siffrorna i talet på dataskärmen. Kan han garantera att talet aldrig blir fyrsiffrigt?

Lösning:

Jadå, det kan han, till och med på flera olika sätt. Det här är Jonnes sätt, varje pil betyder att Daniel byter plats på siffror i talet:
123 -> 132
234 -> 243
345 -> 354
456 -> 465
567 -> 576
678 -> 687
789 -> 798
900 -> 009
111
213 -> 123

Följden är periodisk, det vill säga vi kan varje gång komma tillbaka till startsituationen. Därför kommer talet aldrig bli fyrsiffrigt.

Den bästa låten om ringar

Jag är stolt över att få presentera låten, som redan är känd för många matematikstuderande vid Uppsala Universitet.

Texten är baserad på innehållet i kursen Algebra II, där mycket ringteori ingår.

Låten heter just Ringteori och stilen är trallpunk.

Text och musik: Erik Svensson

En ring är en mängd och två funktioner,
och som krav ställs på dessa därvid
att det är en abelsk grupp med additionen,
och med gånger en monoid

En ring är en mängd…

Och distributiv ska den vara
men ej tvunget kommutativ, nej!
Exempelvis kvaternioner
och matriser kommuterar ju ej (generellt)

Men antag att den kommuterar,
och att för alla nollskiljda a
finns ett b så att a gånger detta
blir ett, då kallas ringen en kropp, hipp hurra!

För en kropp är så trevligt behändig,
och den har endast två ideal,
varav ena är hela kroppen
och den andra är trivial

En ring är en mängd…

Och mellan två ringar kan hända
att det finns en isomorfi,
då är de i nån mening en enda,
för strukturen bevaras däri

En ring är en mängd…

Transformationsmatrisen – del 5

Från Transformationsmatrisen – del 4 fick vi följande resultat:


För att bestämma transformationsmatrisen från bas A till bas B, uttryck basvektorerna i basen B och skriv in resultaten som kolonner i en matris.

Hur gör man då det essentiella steget, det vill säga hur uttrycker man vektorerna i A i basen B?

Jo, precis som på det sista sättet i Transformationsmatrisen – del 3.

Allmänt, ansätt:
A_1=x_{11}B_1+x_{12}B_2+x_{13}B_3+\dots+x_{1n}B_n
A_2=x_{21}B_1+x_{22}B_2+x_{23}B_3+\dots+x_{2n}B_n
A_3=x_{31}B_1+x_{32}B_2+x_{33}B_3+\dots+x_{3n}B_n
\vdots   \vdots
A_n=x_{n1}B_1+x_{n2}B_2+x_{n3}B_3+\dots+x_{nn}B_n

vilket är precis samma sak som A_1=\left(\begin{array}{c}x_{11} \\x_{12} \\x_{13} \\\vdots \\x_{1n}\end{array} \right)_B, \dots, A_n=\left(\begin{array}{c}x_{n1} \\x_{n2} \\x_{n3} \\\vdots \\x_{nn}\end{array} \right)_B

(Varför det är så? Se Transformationsmatrisen – del 2.)

Det är alltså de här talen x_{11}, x_{12}, x_{13} och så vidare som vi skall bestämma. De är ju precis talen i transformationsmatrisen från basen A till basen B.

Hur bestämmer man dessa tal?

Notera att varje ekvation i det stora ekvationssystemet är ett ekvationssystem i sig, om man skriver ut alla vektorernas koordinater:

A_1=\left(\begin{array}{c}a_{11} \\a_{12} \\a_{13} \\\vdots \\a_{1n}\end{array} \right) och B_1=\left(\begin{array}{c}b_{11} \\b_{12} \\b_{13} \\\vdots \\b_{1n}\end{array} \right), B_2=\left(\begin{array}{c}b_{21} \\b_{22} \\b_{23} \\\vdots \\b_{2n}\end{array} \right),\dots, B_n=\left(\begin{array}{c}b_{n1} \\b_{n2} \\b_{n3} \\\vdots \\b_{nn}\end{array} \right)

(Alla små a:n och b:n är för oss kända tal.)

Då blir den första ekvationen A_1=x_{11}B_1+x_{12}B_2+\dots+x_{1n}B_n ett ekvationssystem:
a_1=x_{11}b_{11}+x_{12}b_{12}+\dots+x_{1n}b_{1n}
a_1=x_{11}b_{21}+x_{12}b_{22}+\dots+x_{1n}b_{2n}
\vdots
a_1=x_{11}b_{n1}+x_{12}b_{n2}+\dots+x_{1n}b_{nn}

Och sådana där vet vi löses med Gauss-elimination.

\left(\begin{array}{cccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} \end{array} \right)

Det här löses som vanligt. Matrisen till vänster (allt utom det sista kolonnen) ska göras om till en identitetsmatris och när man gjort det blir den högraste kolonnen det man söker, det vill säga \left(\begin{array}{c}x_{11} \\x_{12} \\\vdots \\x_{1n}\end{array} \right).

Vad gör vi med den andra ekvationen, A_2=x_{21}B_1+x_{22}B_2+x_{23}B_3+\dots+x_{2n}B_n, vilket ekvationssystem blir det?
Jo, om A_1=\left(\begin{array}{c}a_{21} \\a_{22} \\\vdots \\a_{2n}\end{array} \right), så är det

\left(\begin{array}{cccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{21} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{2n} \end{array} \right)

alltså med samma vänstra del till matris som förut. Det blir exakt samma Gauss-operationer som ska utföras, vilket betyder att jobb kan sparas.

\left(\begin{array}{ccccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} & a_{21} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} & a_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} & a_{2n} \end{array} \right) \longrightarrow \left(\begin{array}{ccccccc}1 & 0 & \dots & 0 & | & x_{11} & x_{21} \\0 & 1 & \dots & 0 & | & x_{12} & x_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\0 & 0 & \dots & 1 & | & x_{1n} & x_{2n} \end{array} \right)

Och på exakt samma sätt löser vi ut alla andra små x med hjälp av resten av ekvationerna:

\left(\begin{array}{ccccccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} & a_{21} & \dots & a_{n1} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} & a_{22} & \dots & a_{n2} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} & a_{2n} & \dots & a_{nn} \end{array} \right) \longrightarrow \left(\begin{array}{ccccccccc}1 & 0 & \dots & 0 & | & x_{11} & x_{21} & \dots & x_{n1} \\0 & 1 & \dots & 0 & | & x_{12} & x_{22} & \dots & x_{n2} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\0 & 0 & \dots & 1 & | & x_{1n} & x_{2n} & \dots & x_{nn} \end{array} \right)

Tada! Skrivet på ett annat sätt:

\left(\begin{array}{ccccccccc}B_1 & B_2 & \dots & B_n & | & A_1 & A_2 & \dots & A_n \end{array} \right) \longrightarrow \left(\begin{array}{ccc}I & | & T \end{array} \right)

där B_i och A_i är kolonnvektor skrivna i standardbasen, I är identitsmatrisen och T är transformationsmatrisen, det vi sökte!

Lösning till problem vecka 20

På ett lager fanns likadana ostar. En natt kom sluga råttor dit och åt upp 10 av ostarna. Varje råtta åt lika mycket. Några råttor klarade dock inte av måltiden och fick ont i magen. Nästa natt kom de 7 råttorna som inte fick ont i magen och åt upp resten av osten. Dock fick varje råtta hälften så mycket som natten innan. Hur många ostar fanns det från början?

Alla lösningar jag har fått in går ut på att ställa upp ett ekvationssystem. Lösningen nedan är kopierad från Erik R.

Lösning:

Man kan definiera tre okända storheter: O för antalet ostar, R för antalet råttor och Ä för hur många ostar varje råtta åt under den första natten. Man får då förstås det enkla sambandet

R*Ä = 10 => Ä = 10/R

Man kan då räkna på O

O = 10 + 7*Ä/2

O = 10 + 35/R

Man tänker sig att O skall vara ett heltal, så om det inte finns några bråkdelsråttor som springer omkring måste R vara 1, 5, 7 eller 35. Det framgår dock att R>7, vilket ger R=35. Då blir förstås antalet ostar O=11.

Lösning till problem vecka 19

En fotboll är hopsydd av 32 lappar: vita sexkanter och svarta femkanter. Varje svart lapp gränsar till bara vita, varje vit lapp gränsar till tre vita och tre svarta lappar. Hur många vita lappar finns det i en fotboll?

Man kan anta att Eulerkarakteristiken på fotbollen är 2 och arbeta utifrån det, om man nu vet vad Eulerkarakteristik är för något. Med nedan  använder jag mig av Thomas lösning.

Lösning:

Det finns S svarta lappar och V vita lappar. Totalt finns det 32 st, så S + V = 32.

För varje svart lapp finns 5 vita lappar runt den, men varje vit lapp ligger intill 3 svarta, så 5S räknar varje vit lapp 3 gånger och vi får 5S / 3 = V

Och S + 5S/3 = 32, det vill säga 3S + 5S = 96 och då är S = 12, V = 20. Alltså finns 20 vita lappar.

© 2009-2024 Mattebloggen