Lösningen till problemet för de äldre vecka 44

Mattegåta

Martin samlar på ovanliga mynt. Mynten i hans samling alla har en diameter på högst 10 cm. Samlingen förvarar han i en låda som har storlek 30 cm x 70 cm (i ett lager, inga mynt ligger ens delvis ovanpå varandra).

Men nyss fick Martin ett nytt mynt med en diameter så stor som 25 cm. Visa att den nya samlingen får plats i en låda som är 55 cm x 55 cm stor (också nu i ett lager).

Diskussion

Uppgiften handlar lite om att optimera. Om vi har eventuell platsbrist i den nya lådan, så är det nog lite dumt att lägga det stora 25 cm x 25 cm-myntet i mitten utav den. Mycket smartare är det att lägga det i ett hörn.

Mynt kan även ligga på krångliga sätt, de är ju cirklar av olika storlekar. I varje mellanrum går det att stoppa in ett pyttelitet mynt till. Därför är det omöjligt att uppskatta antalet mynt och även hopplöst att försöka omplacera mynten för mycket.

Så gissningsvis ska mynten ligga ungefär som de gjorde i första lådan. Och det stora myntet ska ligga i ett hörn. Dessa två antaganden leder fram till lösningen nedan.

Lösning (av Benjamin Fayyazuddin-Ljungberg)

Rita ett rött streck 15 cm in på Martins ursprungliga låda, så att den delas in i två delar av storlek 30cm*55cm och 30cm*15 cm. Rita ett parallellt blått streck, 10 cm längre in än det röda, så att vi får två delar av storlek 30cm*45cm och 30cm*25cm.

Dela in lådan två (överlappande) rutor, ett som begränsas uppifrån av överkanten på lådan och nedifrån av det blåa strecket (storlek 30cm*25cm), och ett som begränsas uppifrån av det röda strecket och nedifrån av nederkanten på lådan (storlek 30cm*55cm).

Eftersom mynten högst har diameter 10 cm kan det inte finnas något mynt sådant att det röda strecket och det blåa strecket båda passerar genom det. Därför kan vi säga att varje mynt tillhör den rutan som helt innefattar det myntet. Alla mynt tillhör då någon ruta, och får plats i den. Det kan finnas mynt som hamnar i båda rutorna, då kan man godtyckligt välja vilken ruta de ska tillhöra.

Nu flyttar vi runt rutorna, med alla tillhörande mynt, och placerar dem i Martins nya låda. Vi ser då att vi får plats med en gul ruta i hörnet med storlek 25cm*25 cm. Alltså får det nya myntet plats också.

Matteproblem för de äldre vecka 45

Mattegåta

Ett biljardbord har en långsida som är dubbelt så lång som kortsidan. I varje hörn finns det ett hål, samt två hål till finns på varje långsidas mitt.

Vilket är det minsta antalet bollar som man kan placerat ut på bordet så att varje hål befinner sig på samma linje som ett visst par av bollar? (Bordet är rektangulärt, hål och bollar antas vara lika stora som punkter.)

Lösningen till problemet för de yngre vecka 42

Mattegåta

Till ditt förfogande har du jättemånga figurer som på bilden:

Sätt ihop
a) En kvadrat av storlek 9×9 med ett hål i mitten som är 3×3 stort.
b) En rektangel med storlek 9×12
av sådana figurer (du får vända och vrida på dem, men figurerna får inte överlappa).

Diskussion

För att förenkla arbetet med byggandet, ritar vi först upp alla möjliga utseenden på figuren när man vrider och vänder på den:

Det blev åtta möjligheter, eftersom man kan vända upp och ner på figuren och för varje vändningsläge (rättvänt eller upp-och-ner) går att det att vrida figuren på 4 olika sätt.

Konstruktionen kan påbörjas i ett hörn för både punkt a) och b). Till exempel ser vi att bara den röda och den gröna figuren passar i nedre högra hörnet.

Lösning

Nedan är lösningar för både a) och b):

Matteproblem för de äldre vecka 44

Mattegåta

Martin samlar på ovanliga mynt. Mynten i hans samling alla har en diameter på högst 10 cm. Samlingen förvarar han i en låda som har storlek 30 cm x 70 cm (i ett lager, inga mynt ligger ens delvis ovanpå varandra).

Men nyss fick Martin ett nytt mynt med en diameter så stor som 25 cm. Visa att den nya samlingen får plats i en låda som är 55 cm x 55 cm stor (också nu i ett lager).

Matteproblem för de yngre vecka 42

Mattegåta

Till ditt förfogande har du jättemånga figurer som på bilden:

Sätt ihop
a) En kvadrat av storlek 9×9 med ett hål i mitten som är 3×3 stort.
b) En rektangel med storlek 9×12
av sådana figurer (du får vända och vrida på dem, men figurerna får inte överlappa).

Fler rektanglar

Rekommenderad från: 11 år

[kkratings]

Pelle delade upp ett 8×8-bräde i 30 stycken rektanglar på så sätt att likadana rektanglar inte nuddar varandra, inte ens med hörn. Försök att förbättra hans resultat genom att dela upp brädet i ännu fler rektanglar så att de fortfarande uppfyller villkoret.

Visa lösningen

Fyra färger räcker

Rekommenderad från: 14 år

[kkratings]

Det finns ett rutigt papper. På det finns rektanglar som har sin gräns gående längs med rutorna. Varje rektangel består av ett udda antal rutor och inga två rektanglar har gemensamma inre rutor. Visa att det går att måla rektanglarna i fyra färger på så sätt att två rektanglar med samma färg aldrig har gemensam gränspunkt.

Visa lösningen

Tallskogen

Rekommenderad från: 12 år

[kkratings]

På ett område 1km x 1km växer en tallskog. Alla tallarna har diametern 50 cm. Visa att en fältbiolog kan hitta en ledig rektangel 10m x 20m i skogen, för att kunna sola där med alla sina vänner om det finns a) 1200 b) 4200 c) 4500 d) 4600 träd i skogen.

SONY DSC

Visa lösningen

© 2009-2025 Mattebloggen