Inlärning

Rolig matte?

För länge sedan läste jag att man lär sig bäst när det nya i materialet utgör 30% . Med andra ord, 70% av det man läser, hör och ser ska helst redan vara bekant. Det tycker jag är en ganska rimlig siffra, dock går inte det ihop med begreppet traditionell föreläsning.

En vanlig matteföreläsning innehåller i princip bara nya begrepp,  satser och metoder. Föreläsarna ånstränger sig mycket för att hinna med åtminstone det som står i kursplanen, just för att eleverna ska ha sett “allt” innan de går och studerar på egen hand. De blir ju förstås upprörda om det kommer upp någonting på examinationen som de aldrig har sett förut.

Det är svårt att hitta något alternativ för att optimera inlärning under en föreläsning. Det bästa är att ta upp gamla exempel i lysa upp dem i det nya sammanhanget. Exemplet är någonting studenterna (förhoppningsvis) har sett förut och har någon slags relation till. Berättar man någonting nytt om det kommer det att utgöra ungefär 30% av hela exemplet.

På grund av samma princip lär jag mig bäst innehållet i en kurs tidigast kursen efter. När man ska lära sig flerdimensionell analys är det absolut viktigt att kunna endimensionell analys och då lär man sig det. Och när kursen i endimensionell analys går lär man sig vad man egentligen sysslade med på gymnasiet :)

I matematiken gäller alltså påbyggnadskunskap hela tiden. För att ta ett exempel, tänk på en rektangel. Alla lär sig det begreppet förr eller senare i livet, antingen från verkligheten eller abstrakta bilder. När det är dags att förstå begreppet “area” ritar läraren upp kvadrater eller rektanglar på tavlan och vi får genast en relation till det här nya mattebegreppet. Det första människor tänker på när någon säger “area” är en rektangel. Vi fortsätter vidare, förbi funktioner till envariabelanalys. Säg att vi behöver lära oss hur funktioner maximeras. Absolut bästa exemplet då är det som går ut på att hitta största arean för en rektangel med given omkrets. Väldigt verklighetsanknutet och högst praktiskt problem. Svaret är då att en kvadrat är den formen som ger störst area. Om inte mer, lär man sig åtminstone att maximera funktionen x(1-x) från detta exempel.

Här syns min förkärlek till exempel och jag kan aldrig själv föredra att gå en kurs med endast nytt teoretiskt material. Det är ingen som tycker att någonting är intressant om ingen kan förstå det.

Kommentera