Transformationsmatrisen – del 5

Från Transformationsmatrisen – del 4 fick vi följande resultat:


För att bestämma transformationsmatrisen från bas A till bas B, uttryck basvektorerna i basen B och skriv in resultaten som kolonner i en matris.

Hur gör man då det essentiella steget, det vill säga hur uttrycker man vektorerna i A i basen B?

Jo, precis som på det sista sättet i Transformationsmatrisen – del 3.

Allmänt, ansätt:
A_1=x_{11}B_1+x_{12}B_2+x_{13}B_3+\dots+x_{1n}B_n
A_2=x_{21}B_1+x_{22}B_2+x_{23}B_3+\dots+x_{2n}B_n
A_3=x_{31}B_1+x_{32}B_2+x_{33}B_3+\dots+x_{3n}B_n
\vdots   \vdots
A_n=x_{n1}B_1+x_{n2}B_2+x_{n3}B_3+\dots+x_{nn}B_n

vilket är precis samma sak som A_1=\left(\begin{array}{c}x_{11} \\x_{12} \\x_{13} \\\vdots \\x_{1n}\end{array} \right)_B, \dots, A_n=\left(\begin{array}{c}x_{n1} \\x_{n2} \\x_{n3} \\\vdots \\x_{nn}\end{array} \right)_B

(Varför det är så? Se Transformationsmatrisen – del 2.)

Det är alltså de här talen x_{11}, x_{12}, x_{13} och så vidare som vi skall bestämma. De är ju precis talen i transformationsmatrisen från basen A till basen B.

Hur bestämmer man dessa tal?

Notera att varje ekvation i det stora ekvationssystemet är ett ekvationssystem i sig, om man skriver ut alla vektorernas koordinater:

A_1=\left(\begin{array}{c}a_{11} \\a_{12} \\a_{13} \\\vdots \\a_{1n}\end{array} \right) och B_1=\left(\begin{array}{c}b_{11} \\b_{12} \\b_{13} \\\vdots \\b_{1n}\end{array} \right), B_2=\left(\begin{array}{c}b_{21} \\b_{22} \\b_{23} \\\vdots \\b_{2n}\end{array} \right),\dots, B_n=\left(\begin{array}{c}b_{n1} \\b_{n2} \\b_{n3} \\\vdots \\b_{nn}\end{array} \right)

(Alla små a:n och b:n är för oss kända tal.)

Då blir den första ekvationen A_1=x_{11}B_1+x_{12}B_2+\dots+x_{1n}B_n ett ekvationssystem:
a_1=x_{11}b_{11}+x_{12}b_{12}+\dots+x_{1n}b_{1n}
a_1=x_{11}b_{21}+x_{12}b_{22}+\dots+x_{1n}b_{2n}
\vdots
a_1=x_{11}b_{n1}+x_{12}b_{n2}+\dots+x_{1n}b_{nn}

Och sådana där vet vi löses med Gauss-elimination.

\left(\begin{array}{cccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} \end{array} \right)

Det här löses som vanligt. Matrisen till vänster (allt utom det sista kolonnen) ska göras om till en identitetsmatris och när man gjort det blir den högraste kolonnen det man söker, det vill säga \left(\begin{array}{c}x_{11} \\x_{12} \\\vdots \\x_{1n}\end{array} \right).

Vad gör vi med den andra ekvationen, A_2=x_{21}B_1+x_{22}B_2+x_{23}B_3+\dots+x_{2n}B_n, vilket ekvationssystem blir det?
Jo, om A_1=\left(\begin{array}{c}a_{21} \\a_{22} \\\vdots \\a_{2n}\end{array} \right), så är det

\left(\begin{array}{cccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{21} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{2n} \end{array} \right)

alltså med samma vänstra del till matris som förut. Det blir exakt samma Gauss-operationer som ska utföras, vilket betyder att jobb kan sparas.

\left(\begin{array}{ccccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} & a_{21} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} & a_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} & a_{2n} \end{array} \right) \longrightarrow \left(\begin{array}{ccccccc}1 & 0 & \dots & 0 & | & x_{11} & x_{21} \\0 & 1 & \dots & 0 & | & x_{12} & x_{22} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\0 & 0 & \dots & 1 & | & x_{1n} & x_{2n} \end{array} \right)

Och på exakt samma sätt löser vi ut alla andra små x med hjälp av resten av ekvationerna:

\left(\begin{array}{ccccccccc}b_{11} & b_{12} & \dots & b_{1n} & | & a_{11} & a_{21} & \dots & a_{n1} \\b_{21} & b_{22} & \dots & b_{2n} & | & a_{12} & a_{22} & \dots & a_{n2} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\b_{n1} & b_{n2} & \dots & b_{nn} & | & a_{1n} & a_{2n} & \dots & a_{nn} \end{array} \right) \longrightarrow \left(\begin{array}{ccccccccc}1 & 0 & \dots & 0 & | & x_{11} & x_{21} & \dots & x_{n1} \\0 & 1 & \dots & 0 & | & x_{12} & x_{22} & \dots & x_{n2} \\\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\0 & 0 & \dots & 1 & | & x_{1n} & x_{2n} & \dots & x_{nn} \end{array} \right)

Tada! Skrivet på ett annat sätt:

\left(\begin{array}{ccccccccc}B_1 & B_2 & \dots & B_n & | & A_1 & A_2 & \dots & A_n \end{array} \right) \longrightarrow \left(\begin{array}{ccc}I & | & T \end{array} \right)

där B_i och A_i är kolonnvektor skrivna i standardbasen, I är identitsmatrisen och T är transformationsmatrisen, det vi sökte!

Transformationsmatrisen – del 4

Vi vill göra livet så enkelt som möjligt för oss. Så vi räknar ut transformationsmatrisen som på det andra sättet i Transformationsmatrisen – del 3.

Vi kollar först på ett lite större exempel. Låt oss räkna ut transformationsmatrisen mellan baserna A och B, båda i 5 dimensioner. Säg att vi av någon anledning vet vad vektorerna A_1, A_2, A_3, A_4 och A_5 har för koordinater i basen B:

A_1=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right)_B A_2=\left(\begin{array}{c}-1 \\-1 \\-1 \\-1 \\-1\end{array} \right)_B A_3=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)_B
A_4=\left(\begin{array}{c}1/2 \\1/2 \\0 \\0 \\0\end{array} \right)_B A_5=\left(\begin{array}{c}5 \\2 \\2 \\2 \\5\end{array} \right)_B

Och förstås vet vi dem i basen A:

A_1=\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)_A A_2=\left(\begin{array}{c}0 \\1 \\0 \\0 \\0\end{array} \right)_A A_3=\left(\begin{array}{c}0 \\0 \\1 \\0 \\0\end{array} \right)_A
A_4=\left(\begin{array}{c}0 \\0 \\0 \\1 \\0\end{array} \right)_A A_5=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)_A

Vi betecknar transformationsmatrisen från bas A till bas B med T så länge. Som vanligt får vi uppställningen:

T\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) T\left(\begin{array}{c}0 \\1 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}-1 \\-1 \\-1 \\-1 \\-1\end{array} \right) T\left(\begin{array}{c}0 \\0 \\1 \\0 \\0\end{array} \right)=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)
T\left(\begin{array}{c}0 \\0 \\0 \\1 \\0\end{array} \right)=\left(\begin{array}{c}1/2 \\1/2 \\0 \\0 \\0\end{array} \right) T\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)=\left(\begin{array}{c}5 \\2 \\2 \\2 \\5\end{array} \right)

T är en 5×5-matris. Om vi tittar noga på första multiplikationen T\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) ser vi att det är nödvändigt att matrisen har \left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) som första kolonn.

På samma sätt följer de andra kolonnerna från de senare ekvationerna.

Alltså:
T=\left(\begin{array}{ccccc}1 & -1 & 0 & 1/2 & 5 \\2 & -1 & 0 & 1/2 & 2\\3 & -1 & 0 & 0 & 2\\4 & -1 & 0 & 0 & 2\\5 & -1 & 1 & 0 & 5\end{array} \right)

Eller, om vi kastar en blick tillbaka, så inser vi att de specifika siffrorna inte spelar någon större roll:
T=\left(\begin{array}{ccccc}[A_1]_B & [A_2]_B & [A_3]_B & [A_4]_B & [A_5]_B\\\end{array} \right)

med vilket menas att kolonnerna i matrisen är alla de vektorerna A_1, A_2, A_3, A_4 och A_5 uttryckta i basen B.

Och det är precis vad vi behöver i det generella fallet.

För att bestämma transformationsmatrisen från bas A till bas B, uttryck basvektorerna i basen B och skriv in resultaten som kolonner i en matris.

Riktigt så enkelt är det ju inte, den informationen som krävs har vi inte alltid från början. För att få veta hur man gör i ett jättegenerellt fall, kolla på nästa del.

Transformationsmatrisen – del 3

Det här är fortsättningen på inläggen Transformationsmatrisen – del 1 och Transformationsmatrisen – del 2. I de två första delarna behandlades begreppen bas och vektorernas koordinater i olika baser.

Hur bestämmer man en transformationsmatris?

För att bestämma en matris, vilken som helst matris, är det ett nyttigt första steg att ta reda på matrisens storlek. Det vill säga hur många rader och kolonner den borde ha.

En mxn-matris är en matris med m rader och n kolonner. När en matrismultiplikation sker, händer följande med storlekarna:

mxn-matris gånger nxk-matris resulterar i en mxk-matris

Som ni ser äts det mittersta talet (n) upp, och de andra två kvarstår (m och k) och ger stoleken på resultatmatrisen.

I vårt fall känner vi inte till storleken på vänstraster matrisen (som ska bli transformationsmatrisen), men på de andra två (de är vektorer, kolonnvektorer, som är då kx1-matriser). De är, eftersom vi är i 2 dimensioner, 2×1 matriser.

Alltså: mxn matris gånger 2×1-matris resulterar i en 2×1-matris. Hmm, den siffran som äts upp är i alla fall 2, det vill säga n=2. Och m ska vara samma som den första siffran i resultat, så också 2.

Vi söker en 2×2-matris och en dum men ofta fungerande lösning är att köra brute force, det vill säga ansätta
Transformationsmatrisen=\left(\begin{array}{cc}a &b\\c &f\end{array} \right)

Nu ska vi faktiskt minnas vad det var vi höll på med från början. Vi ville bestämma en matris som omvandlade vektorer från standardbasen till bas d.

Det ska alltså bland annat funka för själva basvektorerna.

Ett sätt

Som exempel kan vi välja standardbasvektorer, men jag väljer basvektorerna i basen d. Orsaken är att vi känner till koordinaterna för dem både i bas d, nämligen d_1=\left(\begin{array}{c}1 \\0\end{array} \right)_d, d_2=\left(\begin{array}{c}0 \\1\end{array} \right)_d och i standardbasen, nämligen d_1=\left(\begin{array}{c}1 \\-1\end{array} \right), d_2=\left(\begin{array}{c}1 \\1\end{array} \right).

Vi kan då ställa upp:
\left(\begin{array}{cc}a &b\\c &f\end{array} \right) \cdot \left(\begin{array}{c}1 \\-1\end{array} \right) blir \left(\begin{array}{c}1 \\0\end{array} \right)
samt
\left(\begin{array}{cc}a &b\\c &f\end{array} \right) \cdot \left(\begin{array}{c}1 \\1\end{array} \right) blir \left(\begin{array}{c}0 \\1\end{array} \right)

Och utförande matrismultiplikation som vanligt, även om a, b, c och f är okända, får vi:
a-b=1
c-f=0
a+b=0
c+f=1

Det ekvationssystemet kan vi lösa för hand: addera ekvationerna med a och b ledvis, då får vi 2a=1, så a=½, b=-½. På liknande sätt c=½, f=½.

Så transformationsmatrisen=\left(\begin{array}{cc}1/2 &-1/2\\1/2 &1/2\end{array} \right).

Men man kan göra samma uppgift på flera olika sätt, detta glöms alldeles för ofta när man läser matematik.

Ett annat sätt

Vad händer till exempel om vi istället väljer standardbasvektorerna? De är vektorerna \left(\begin{array}{c}1 \\0\end{array} \right) och \left(\begin{array}{c}0 \\1\end{array} \right) i standardbasen, men vad är de i bas d? Vi kan gissa det eller räkna ut det, ett arbete som kommer löna sig ska det visa sig.
\left(\begin{array}{c}1 \\0\end{array} \right)=xd_1+yd_2
\left(\begin{array}{c}1 \\0\end{array} \right)=x\left(\begin{array}{c}1 \\-1\end{array} \right)+y\left(\begin{array}{c}1 \\1\end{array} \right)

vilket ger ekvationssystemet x+y=1, -x+y=0 (det liknar lite det vi fick i del 2), som i sin tur ger oss 2y=1 och således y=½, x=½ . På liknande sätt med andra standardbasvektorn:

\left(\begin{array}{c}0 \\1\end{array} \right)=zd_1+wd_2
\left(\begin{array}{c}0 \\1\end{array} \right)=z\left(\begin{array}{c}1 \\-1\end{array} \right)+w\left(\begin{array}{c}1 \\1\end{array} \right) som ger ekvationssystemet z+w=0, -z+w=1, som ger 2w=1 och således w=½, z=-½ .
Bekanta tal, eller hur?

Vi har alltså \left(\begin{array}{c}1 \\0\end{array} \right)_{st}=\left(\begin{array}{c}1/2 \\1/2\end{array} \right)_d och \left(\begin{array}{c}0 \\1\end{array} \right)_{st}=\left(\begin{array}{c}-1/2 \\1/2\end{array} \right)_d

Vad är då belöningen för denna möda?
Jo, om vi nu ställer upp matrisekvationen precis som innan, fast med nya vektorer, ser vi följande:
\left(\begin{array}{cc}a &b\\c &f\end{array} \right) \cdot \left(\begin{array}{c}1 \\0\end{array} \right) blir \left(\begin{array}{c}1/2 \\1/2\end{array} \right)

\left(\begin{array}{cc}a &b\\c &f\end{array} \right) \cdot \left(\begin{array}{c}0 \\1\end{array} \right) blir \left(\begin{array}{c}-1/2\\1/2\end{array} \right)

Och utför man matrismultiplikationen med variablerna får man:
a+0=½
c+0=½
0+b=-½
0+f=½

Praktiskt, eller hur? Utan mycket extra möda får vi igen \left(\begin{array}{cc}a & b\\c & f\end{array} \right)=\left(\begin{array}{cc}1/2 &-1/2\\1/2 &1/2\end{array} \right)

Det är just den här andra metoden man i allmänhet använder för att ta reda på transformationsmatriser generellt. Vi tittar på ett lite mer generellt fall i nästa del.