Fjärde träffen med Matteklubben, åk 2-4

Minsta eleverna som går i Matteklubben är de i åk 2-4. Du kan läsa om första, andra och tredje träffen med gruppen.

Nytt sätt att sitta

Den sista gången för terminen testade vi en ny bordsuppställning. Vanligtvis brukar vi behålla lektionssalen som den är, det vill säga ha 4 långa rader med bord och stolar, uppdelade i tre sektioner (den mittersta sektionen är störst). Det finns egentligen plats för cirka 40 personer, men vår grupp är inte lika stor längre (det brukar nu komma mellan 20 och 30 barn). Dels för att skapa naturlig ”gruppkänsla” och dels för att ha mer utrymme för att gå runt mellan grupperna gjorde vi några ”öar” med bord, med 4-6 sittplatser runt dem.

Några av barnen kom tidigt och hjälpte oss att flytta borden och stolarna. Det känns som att barnen gillade den här uppställningen, det är ju så det brukar vara i grundskolan och jag tycker att det ger en mer avslappnad känsla. Dessutom kunde vi snabbt skapa stort tomt utrymme i mitten av rummet för en aktivitet i slutet av lektionen.

Introduktion till scheman

Målet med lektionen var att introducera schemaritande i problemlösning. Den idén har vi gått igenom med årskurs 5-6, men nu behövde vi ta ner nivån något för att även de minsta barnen skulle förstå vitsen med tekniken.

Jag tycker om att börja lektionerna med en lekövning, så att alla kan komma igång och få en känsla för dagens tema. Denna gång var det dock svårt att göra övningar i form av spel, det vill säga, det fanns inget uppenbart mål för eleverna. Men de gjorde uppgifterna så som de blivit ombedda att göra och fick hum om dagens tema ändå. Följande fick de göra:

Varje grupp fick två papper. Första pappret skulle de riva sönder i några bitar (så många som de var i gruppen, det vill säga 3-6). Varje person skulle ta en lapp och skriva sitt namn på lappen. Sedan skulle de skrynkla lappen, lägga den i en hög och sedan dra en slumpvis annan lapp. På så sätt skulle varje barn få någon annans namn. På det andra pappret skulle de rita ett schema över vem som fick vems namn.

I den andra övningen skulle de sitta i grupper om 5-6 personer. Barnen skulle blunda och sträcka ut båda sina händer mot mitten. Sedan skulle de ta tag i någon annans hand med vänsterhanden, samt med högerhanden. När alla är klara får man titta igen. Sitter alla ihop nu? Om inte, vilka sitter ihop, vilka sitter inte ihop? Här behövde inte barnen rita, utan bara säga svaren högt.

Det blev lite förvirring över en andra uppgiften, då jag först bad dem att gissa ifall alla satt ihop eller inte när de fortfarande blundade. Vissa grupper kunde ge en gissning, vissa inte. Jag tror att de behöver ha lekt leken några gånger och känna igen situationen för att börja komma på strategier för att testa om de utgör en sammanhängande graf eller inte. Men denna lek var ny för dem och målet med leken var som sagt ganska diffus.

Efter att alla grupper hade testat att göra scheman på sig själva gick vi igenom allas ritningar från första övningen på tavlan. Vissa fick en triangel, vissa fick cirkel och vissa mer avancerade figurer. Vi kom överens om att en cirkel med tre personer är egentligen samma schema som en triangel. Barnen kunde då förstå att en cirkel med fyra personer är samma som en kvadrat. Och att en kvadrat kan ritas på ett annat sätt (som en ”åtta”/”timglas”). Jag försökte poängtera att det inte formen som räknas, utan vem som faktiskt fick vems namn. Detta motsvarar grafisomorfismer i matematiken och det är roligt att introducera isomorfismer till barnen i så tidig ålder och att de verkar förstå.

Grafer

Som vanligt fick eleverna försöka lösa uppgifter i grupper, men denna gång var det naturligt att grupperna blev lite större (på grund av hur gruppen satt i en ring runt ett par bord). Det gjorde troligen så att klassen löste uppgifterna lite fortare än vad de annars skulle ha gjort. Vissa grupper fick en extrauppgift när de var helt klara (en extra svår bild att rita enligt reglerna i uppgift 3).

Under varje uppgift skriver jag några diskussioner jag haft med grupperna.

1. Några barn gick på en picknick. En vuxen ritade av dem på en bild där varje barn blev en liten cirkel. Sedan ritade han ut pilar, som om varje pojke skulle peka på sina systrar. Så här så det ut:

syskon

(a) Vilka barn är säkerligen flickor? Markera dem med ett kryss.
(b) Är det några pilar som den vuxna säkerligen glömde bort att rita ut?

Lärare (ser hur eleverna har ritat): Hur vet ni av de överkryssade är flickor?
Elever: Det är de som man pekade på.
Lärare (ser att inga nya pilar är utsatta): Kan man inte veta något mer, någon som skulle ha pekat på sin syster? Vilka vet man är syskon?
Elever visar på en större grupp, men ibland visar (gissar?) helt fel också.
Lärare (när elever visar fel): Det här kan man inte veta säkert. De kan ha varit syskon, men också är det möjligt att de inte är det. Markera bara det som är helt säkert.

2. Harry Potter vet hur man omvandlar en padda till en prinsessa, en svamp till en
padda och ett päron, ett päron till ett äpple, en äppelskrutt till en kattunge och en
igelkott, en kattunge till ett päron eller ett äpple, en igelkott till ett päron, ett äpple
kan han dock bara omvandla till en äppelskrutt. Just nu har han bara ett äpple. Kan
han omvandla det till en prinsessa?

Elever: Det är svårt att se. Vi lyckas inte..
Lärare: Rita ett schema över vad Harry Potter kan göra. Då kan ni lättare se om svaret är ”ja” eller ”nej”.
Elever: Ahaa, kan svaret alltså vara ”nej”!?

3. Vilken av följande bilder går att rita utan att släppa pennan från pappret? Vilken går inte att rita på det sättet? Det är inte tillåtet att dra samma sträcka flera gånger.

tavlor

Elever: Så här gjorde vi på den första. På den andra går det bara om man ritar ”ett tak”.
Lärare: Nu finns det inget ”tak” på den andra. Varför är det så att det inte går att rita? Man kanske kan börja i mitten?
Elever: Kanske… (prövar)… nä, det går inte att börja i mitten heller.

4. Går att rita följande figur utan att lyfta pennan från pappret med samma regler som innan?

kvadrater

Elev: Jag lyckades! Men jag kommer inte ihåg hur jag gjorde… Vänta så ska jag visa hur man gör (ritar igen).
Lärare: Japp!

5. Hitta på en figur som består av 8 linjer som inte går att rita enligt reglerna ovan.

Elever: Den här går inte.
Lärare: Består den verkligen av 8 linjer?
Elever: Ah, justja…

 

Genomgång

När de flesta av eleverna var klara med uppgifterna gick vi igenom dem på tavlan.

1. På den första uppgiften ritade jag upp situationen och pekade på cirklarna en i taget samtidigt som jag frågade ”ska det vara ett kryss där?” Då svarade eleverna unisont ”ja” eller ”nej”, förutom i fallen då cirklarna stod ensamma. Där är man faktiskt inte säker. Det skulle kunna vara ett ensambarn och man vet inte huruvida det är en pojke eller en flicka.

Sedan fick några elever komma fram och rita ut pilarna som saknades. Jag sade att halvsyskon inte förekommer i den här uppgiften, fast jag tror egentligen det inte var någon som frågade det heller.

2. Uppgiften om Harry Potter löste eleverna på lite olika sätt. Någon utgick från slutet och kunde motivera svaret ”nej” genom att säga att det inte går att få svamp på något sätt och man måste ha en svamp för att senare få en prinsessa.

Jag ritade ändå upp schemat med pilar över vad man kunde få ur vad, så att det blev klart att det fanns två åtskilda system och man kunde se direkt att det inte gick att gå med pilar mellan dem. Fördelen med den lösningen är att man kan svara på fler frågor än just den som ställs i uppgiften, t.ex. att man inte kan omvandla ett päron till en padda heller.

3. Vi ritade upp den första figuren på tavlan och kom fram till att den andra inte gick (utan att egentligen bevisa det). Jag frågade eleverna var det gick att börja (i vilken punkt) för att rita den första figuren. Efter lite testning kom vi fram till att bara två punkter gick att starta i för att få en korrekt väg.

4. Efter att en elev ritade upp vägen i tre kvadrater-uppgiften ställde jag samma fråga. Vilka punkter gick att starta på eller snarare, vilka punkter går det inte att starta på? Dock när någon elev pekade ut en ”omöjlig” punkt, så visade jag hur man kunde starta i den och rita upp figuren enligt reglerna. Till slut avslöjade jag att det faktiskt gick att starta i vilken punkt som helst.

Vi gick inte igenom teorin om Eulerstigar och hörn med udda/jämn grad, men eleverna är nu mottagliga för den idén efter att ha fått känna på sådana uppgifter.

5. Många grupper fick komma fram till tavlan samtidigt och rita upp sina grafer. Jag ringade in de som var korrekta (bestod av 8 linjer och var omöjliga att rita enligt reglerna), vilket de flesta var.

Efter genomgången tog vi en välbehövd rast. Enligt schemat skulle vi ha lekt knutleken, men jag senarelade den.

Julnötter

Många barn frågade vad ”julnötter” vad för något, eftersom de inte hade träffat på ordet ”nötter” i betydelsen ”kluringar”. Jag tror att vi fick den frågan från alla grupper :)

1. Erik var ute och julhandlade. 1/10 av alla sina pengar spenderade han på nötter, 2/5 på kakor och 1/2 på praliner. Hur mycket pengar hade Erik kvar efter att han hade handlat?

Elever: Hur ska man tänka här?
Lärare: Till att börja med, testa vad som skulle ha hänt om Erik hade 10 kronor från början.
Elever (efter att ha räknat): Då skulle han få 0 kronor kvar.
Lärare: Vad skulle hända om han hade 100 kronor från början? 150?
Elever räknar…
Lärare: Ni kan testa att rita upp delarna om det är svårt att räkna.

2. Det finns två timglas som kan mäta 7 respektive 11 minuter. Julgröten måste kokas i exakt 15 minuter. Hur kan man mäta denna tid med hjälp av endast timglasen? Försök att vända timglasen så få gånger som möjligt.

Elever: Hur funkar det här? Vi kommer inte på hur man ska göra.
Lärare: Vi har timglas så att vi kan mäta 7 minuter och vi kan mäta 11 minuter. Kan ni komma på hur man skulle mäta 18 minuter?
Eleverna kommer på hur man gör.
Lärare: 14 minuter då?
Eleverna berättar hur man gör.
Lärare: Försök att komma på ett sätt att mäta 4 minuter.
Efter ett tag kommer en av eleverna i gruppen på hur man gör. Då ber jag att förklara lösningen till de andra gruppen. Efter det brukar någon i gruppen eller samma elev komma på hur man gör för att mäta upp 15 minuter.

3. Har du någonsin gjort girlanger utav gubbar till julgranen? Nedan ser du hur du kan göra en girlang av snögubbar (eller ljus), men hur gör man för att klippa ut en girlang med varannan snögubbe, vartannat ljus?

snogubbe

Jag såg endast 1-2 grupper börja på den här uppgiften, eftersom vi hade så lite tid till julnötterna (och de var svåra). Men åtminstone en grupp lyckades göra girlangen.

 

Knutleken

I slutet av lektionen plockade vi bort borden och stolarna i mitten för att göra ett stort tomt utrymme för knutleken. Alla, både eleverna och lärarna, ställde sig i en ring. Vi gjorde samma sak som i början av lektionen, fast i helklass: Alla blundade, sträckte fram två händer och gick mot mitten. Jag hjälpte till när händerna skulle ta tag i varandra, så att alla händer fick en annan och så att inga tre händer möttes. Sedan fick alla titta igen och nu var det meningen att man skulle trassla upp ”knuten” utan att släppa händerna från varandra. Såklart kunde det bli så att flera separata ringar bildades, vilket några av eleverna förutspådde och vilket också hände. Också kunde det hända att några deltagare stod bak-och-fram i slutet, bara för att slutresultatet skulle bli en ring.

Det är faktiskt inte givet att knuten går upp, men oftast gör den det. I vårt fall hade vi en liten ring på två personer som lösgjorde sig i början, samt två större ringar som var fästa i varandra.

Efter att vi var klara skulle eleverna fylla i en liten utvärdering, men så fort de hade gjort det ville de leka knutleken igen. Det gjorde de även efter att lektionen var slut. Jag håller med dem om att det är en kul lek :)

Utvärdering

Precis som i mellanstadiet fick eleverna svara på följande frågor:

Vad har varit roligast att göra på Matteklubben?

Vad har varit minst roligt att göra på Matteklubben?

Ge dig själv betyg 1-5 (5 är högst) beroende på hur flitig du har varit med att lösa problemen (ringa in):

1 2 3 4 5

Vill du fortsätta gå på Matteklubben nästa termin (ringa in):

Ja Nej Kanske

Resultatet av utvärderingarna

Efter varje svarsalternativ står det hur många elever hade svarat så. Det märks vilken aktivitet föregick utvärderingen :)

Vad har varit roligast att göra på Matteklubben?

– Lösa uppgifter tillsammans

– Mattekluringar 2 – det borde vara lite svårare och lättare beroende på vilka frågor det är.

– Knutleken 3

– Att man fick vara i grupper och räkna tillsammans 4

– Vet ej

– Allt! Bäst i världen!

– Mattelekarna 4

– Mera matte, mindre raster

– Att klippa rubiks kub

– Att alla uppgifter är lagom svåra

– Goda mackor

Vad har varit minst roligt att göra på Matteklubben?

– Sallad på mackorna

– Vet inte 4

– Vissa uppgifter är svåra!

– Genomgångarna fast de var också roliga

– Att sitta och vänta

– Bara mattelekarna var roliga – minst roligt var allting annat 2

– Kortare genomgångar 3

– För korta raster 2

– Inget 3

– Julnötter

Ge dig själv betyg 1-5 (5 är högst) beroende på hur flitig du har varit med att lösa problemen (ringa in):
Betyg 1: 0
Betyg 2: 0
Betyg 3: 9
Betyg 4: 5
Betyg 5: 5

Vill du fortsätta gå på Matteklubben nästa termin?
Ja: 11
Nej: 1
Kanske: 7

Tankar efter terminen

Det märks att de minsta barnen tyckte att det var roligt att gå på Matteklubben, men kanske var det roligast just att ”leka” med matte. Vi har försökt att blanda lek och allvar, speciellt på de senaste två gångerna och det ämnar vi att göra även nästa termin. Möjligen blir det lättare att göra lektionen tillräckligt varierande för att de yngsta barnen ska orka med, då vi kommer att ha 1,5h-lektioner i vår, något kortare än i höstas. Kanske finns det en poäng i att ha någon speciell aktivitet på rasten. På så vis förlorar vi inte så mycket på att göra rasten längre, och barnen får samtidigt samarbeta på ett mer avslappnat sätt och lära känna varandra.

Då matteklubben fortsätter hela 2015 kan jag nu planera ett löpande program istället för att ta enskilda teman. Nu när jag har bättre koll på barnen (och med mindre grupper) vore det kanske möjligt att följa enstaka barnens utveckling.

Har du tips på rastaktiviteter/lekar med matematisk vinkel som passar bra att göra i den här gruppen, kommentera gärna här nedan!

Tredje hemuppgiften från Matteklubben, åk 5-6

Här i kommentarerna kan du diskutera hemuppgiften. Skriv om du har frågor eller förslag på lösning/svar.

• I ett höghus med 100 våningar finns en hiss, som bara har två knappar: ”+7” och ”-9”. Den första knappen får hissen att gå upp sju våningar, den andra får den att flytta sig 9 våningar ner. Går det att åka från vilken våning som helst till vilken annan våning som helst?

• Hästar står på ett litet schackbräde så som det syns på den vänstra bilden. Hästarna följer schackreglerna när de gör drag. Kan de efter några drag ställa sig så som den högra bilden visar?

horses

Tredje träffen med Matteklubben, åk 5-6

Matteklubben är Uppsala kommuns satsning på begåvade elever i matematik. Jag har äran att förbereda aktiviteterna som vi håller på med och vara en av lärarna. Du kan kolla upp var vi gjorde på första träffen och andra träffen innan du läser vidare.

Många lärare

Till Matteklubbens träffar kommer cirka 30 elever och antalet lärare brukar bli ungefär en på 5 elever. Några frågar mig vad alla lärare utom mig gör och jag brukar svara att de verkligen behövs! Det finns alltid saker att göra: Allt från att dela ut pennor och fika till att delta i matematiska diskussioner med de mest envisa eleverna. Det är väldigt bra att vara fler än en lärare, är man ensam så kan man göra något grovt matematiskt fel och det är inte säkert att någon upptäcker det. Det gör ingenting om en lärare har fel, men det är viktigt att reda ut felen. Eleverna måste se att det är sanningen i matematiken som gäller, och inte lärarnas subjektiva (och möjligen något auktoritära) åsikter.

Hemuppgiften

Lektionen började med läxan, precis som förra gången. Den hade ingen gjort så det blev en klassdiskussion.

Först undersökte vi vad som hände med en figur vars sidor blir hälften så stora. Hur många gånger mindre blir arean? En elev förklarade att om man tänkte på en kvadrat, så såg man att den gick från att vara fyra rutor till att bara vara en. Därmed kunde man se att arean blev fyra gånger så liten.

Den andra uppgiften var (är och förblir) riktigt svår, så jag ställde en ledande fråga till klassen. Det var en uppgift vi hade förra gången, om hur man kan rita en kvadrat med dubbel så stor area som en given. Det vill säga, rita en kvadrat på ett rutat papper med arean lika med exakt två rutor.

Många elever föreslog att man skulle förstora varje sida 1,5 gånger. En elev hade kollat upp med sin pappa att sidan i målkvadraten är roten ur 2, det vill säga ungefär 1,4. Båda förslagen vände jag mig emot med argumentet att det då inte blir en exakt bild (och arean blir inte heller exakt 2). Och om sidorna förstoras 1,5 gånger visade min kollega på tavlan att arean faktiskt blir större än 2. Det visade sig i diskussionen med kollegan senare att de gamla grekerna tänkte på precis samma felaktiga sätt som barnen på Matteklubben, de ville också förstora sidorna med 1,5.

Jag gav ledtråden om att en ruta består av två trianglar. Hur kan man rita en figur som består av dubbelt så många trianglar? En eller två av eleverna kunde då rita en korrekt bild på tavlan, det vill säga en vriden kvadrat, där sidorna utgörs av rutdiagonaler. Jag poängterade att denna figur har exakt dubbelt så stor area som en ruta.

För att lösa läxans andra uppgift tipsade jag om att kombinera svaren på uppgifterna vi har diskuterat hittills. Man ska egentligen tänka på samma sätt som i problemet där en kvadrat ska få dubbelt så stor area.

Grafteori

När man är nybörjade på matematisk problemlösning, vet man inte alltid hur uppgifter kan börja lösas. Det gäller då att visa upp många olika verktyg för barnen, för att de ska kunna välja det som passar vid varje tillfälle. Tillsammans med eleverna skapar vi en schweizisk armékniv med problemlösningstekniker. Men det är viktigt att inte behöva övertala dem (vilket ofta sker på vanliga mattelektioner) om att en viss teknik är viktig och kommer troligen att användas ”senare”. Istället väljer jag uppgifter där en viss teknik uppstår naturligt, och man ser direkt hur det underlättar problemlösandet.

En sådan teknik går utt på att rita scheman över objekt som finns i problemet, det som på högnivå-mattespråk kallas ”att rita en graf”.

Uppgifterna

Vi hade bara tre uppgifter på temat, men det var ganska mastiga alla tre. Många hann lösa ettan och börja på tvåan, men trean hann jag knappt diskutera med någon grupp.

Under uppgifterna står vanliga dialoger som skedde på lektionen.

1. I vår solsystem finns 8 planeter och Pluto, som en gång i tiden räknades som planet. Man utvecklade rymdturismen genom att erbjuda följande rutter (både fram och tillbaka): Jorden-Merkurius, Pluto-Venus, Jorden-Pluto, Pluto-Merkurius, Merkurius-Venus, Uranus-Neptunus, Neptunus-Saturnus, Saturnus-Jupiter, Jupiter-Mars, Jupiter-Neptunus, Mars-Uranus.

(a) Går att ta sig från Jorden till Mars?

Vissa elever missade ”fram och tillbaka” och vissa var lite osäkra på vilka planeter man fick åka emellan (det vill säga om man fick ”mellanlanda”). När vi redde ut dessa saker kunde de fortsätta med problemet.

Elever: Svaret är ”ja”….eller ”nej”… kanske… vi vet inte riktigt.
Lärare: Om det går, hur skulle man gå tillväga då? Hur skulle man exakt åka, mellan vilka planeter?

Elever: Svaret är ”nej”, för om man tar sig till Mars måste man komma från Uranus eller Jupiter, och om man ska ta sig till Jupiter så är det från Saturnus eller Neptunus, och till Neptunus kommer man från Jupiter så det går inte.
Lärare: Men ni har inte missat några utvägar då? Har vi verkligen kollat alla möjligheter? För att vara säkra så kan ni rita ett schema lite som scheman nedan.

(b) Vilka av scheman nedan kan representera ruttsystemet?

planetsystem

(c) Finns någon planet på schemat som du med säkerhet kan ange namnet på?

Uppgifterna (b) och (c) diskuterade jag med hela klassen ståendes framme vid tavlan. Några elever fick komma fram och rita egna scheman, samt säga vilka av scheman på bilden som fungerade för uppgiften. Eleverna kunde även korrekt förklara att man kunde bestämma Saturnus, men inga andra planeter. Rättare sagt, tillsammans kunde de exakt bestämma vilka villkor gällde för Saturnus (kopplad till två planeter, som båda är kopplade till tre planeter). Många kunde även förklara varför det inte gick att bestämma andra planeter med säkerhet.

2. Några barn i klassen kan spela olika musikinstrument: Pia kan spela gitarr och piano, Ville kan spela gitarr och dragspel, Tommy – fiol och cello, Daniel – bas och trumpet, Lena – piano och dragspel, Sara – fiol och trumpet, Solveig – cello och bas. På hur många sätt kan man ge var och en av dem ett instrument (alla instrument måste vara olika) så att alla kan spela samtidigt?

Elever: Vi ritade ett schema och såg att varje barn var kopplad till två instrument och varje instrument spelas av två barn.
Lärare: Kan man rita schemat på något annat sätt så att det ska bli lättare att bestämma svaret i uppgiften?

Elever: Vi gjorde en tabell och skrev upp alla möjligheter. Det blev fyra.
Lärare: Är ni säkra på att ni inte missade några möjligheter?

Även denna uppgift gick jag igenom på tavlan för att visa exempel på hur man ”snyggar till” scheman. Tricket är att inte bara rada upp instrumenten på ena raden och barnen på andra raden och sedan börja koppla ihop dem. Istället kan man börja med ”gitarr-Pia-piano” och sedan fortsätta med nästa person som ska spela piano och vidare göra så tills cirkeln är sluten. Då får man ett mycket tydligare schema. Jag visade att det då var självklart att ena cirkeln kunde fördela instrumenten på två sätt och andra också på två.

Vad blev svaret då? ”Fyra”, svarade barnen. ”Två plus två eller två gånger två?” undrade jag. Många av barnen förstod inte riktigt hur jag menade (”Det är ju samma sak!”). Men när jag förklarade att om det hade varit 2 och 3 sätt i respektive cirkel, skulle jag då addera eller multiplicera dem, så förstod många att det var multiplikation jag var ute efter. Kul att visa att 2+2 och 2*2 inte ”betyder” samma sak. Återigen, att det är hur man tänker, och inte svaret, som räknas.

3. I ett höghus med 100 våningar finns en hiss, som bara har två knappar: ”+7” och ”-9”. Den första knappen får hissen att gå upp sju våningar, den andra får den att flytta sig 9 våningar ner. Går det att åka:
(a) Från första våningen till den andra?
(b) Från den andra våningen till den första?

En del elever hann nosa in på den här uppgiften och lösa (a) och möjligen (b) också. De som var klara fick kika på hemuppgifterna, där de ofta fortsatte med hissuppgiften. Se nästa inlägg för fler detaljer.

 

Regatta

Andra delen av lektionen genomförde vi en liten tävling, matteregatta. Regattan var planerad i tre omgångar, men vi hann bara med två, och dessutom fick vi korta ner den andra omgången till 10 minuter.

Elevernas delade sig själva upp i par och sedan sattes paren ihop till lag om fyra. Vissa lag fick vara tre personer. Alla lag fick heta någon frukt som till exempel lag Ananas (för att inte slösa bort tid på att hitta på lagnamn gav jag alltså ut lagnamnen). Sedan fick de för första gången öva på att skriva ner lösningar på Matteklubben (och inte bara berätta dem). Juryn, vilket var de andra lärarna, satte poäng på lösningar som de hade fått in.

Efter att eleverna var klara med första omgången, gick jag igenom lösningarna, medan juryn rättade. Därför kan jag inte säkert säga varför poängen blev som det blev, annat än att juryn bedömde fullständighet och korrekthet. När omgången var rättad, fick alla höra poängen samtidigt som att de fick möjligheten att protestera över sin poäng. Då är tanken att juryn går igenom lösningen en gång till och kollar efter om lösningen eventuellt är värd mer poäng.

Tanken med den demokratiska aspekten är återigen att minska auktoritetens betydelse och ta bort eventuell objektiv bedömning från matematiken. Det är som till slut är värt poäng är resonemanget som finns nedskrivet på pappret, och inför det står alla lagen lika.

Vi fick dra över tiden lite grann för att på samma sätt hinna gå igenom andra omgången. Om du är intresserad av riktlinjerna som juryn hade vid rättningen, så kan du ladda ner dem här nedan.

 

 

Resultat

Här är regattans fullständiga slutgiltiga resultat. Grattis återigen till lag Mango som vann i en jämn kamp!

regatta_resultat

Tankar efter lektionen

Efter lektionen samlades vi alla lektionsledarna för att diskutera vad som har gått bra och dåligt. Vi var som vanligt imponerade av elevernas förmåga att ta åt sig nya idéer. Det kändes också att lektionens uppgifter blev bra (lagom svåra och roliga).

Det som man hade kunnat göra bättre var att ha ett tydligare schema, som eleverna och lärarna skulle försöka hålla sig till. Det hade varit bra bland annat för att hinna med den inplanerade tävlingen. Lektionen kändes också något stökigare än vanligt och där skulle fasta tider ha hjälpt. Det var bra med rast tyckte alla lärare!

Det ska bli spännande att träffa eleverna en sista gång innan Jullovet. Då blir det också dags för utvärdering!

Ögruppen

Ögruppen

[kkratings]

I en ögrupp är varje ö kopplad till sju andra via broar. Totalt finns det 84 broar. Hur många öar är det i ögruppen?

Visa lösningen

En kung som gillade att bygga

En kung som gillade att bygga

[kkratings]

I Sagolandet fanns en kung som tyckte mycket om att bygga. En gång bestämde han sig för att bygga 6 torn och anlägga vägar mellan varje par av torn, men på så sätt
att det bara skulle bildas tre korsningar mellan vägarna. Dessutom fick bara två vägar mötas i varje korsning, aldrig fler.

Hur skulle planen över tornen och vägarna kunna se ut?


Visa lösningen

En lektion för små barn i grafteori

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Grafer

Jag försökte att introducera grafer på den allra första lektionen men begreppen tog sig inte. Det var inte naturligt för fem- och sexåringarna att representera människor med prickar och syskonsrelationer med pilar. Eller så passade inte temat till att vara först av alla helt enkelt.

Därför tänkte jag prova igen att bekanta barnen med grafer, denna gång med en mycket mjukare introduktion. Därför handlar egentligen inte så stor del av lektionen om grafer.

Barn ska kunna differensiera enkla linjära former

Titelt är ett skämt och betyder ungefär att barn ska kunna skilja på cirklar, trianglar och kvadrater.

Dagens lek går ut på att bygga ett land som består av öar. Öarna har alla olika färg och form: cirkel, rektangel, ring, femhörning etc. Barnen ska kunna nämna alla formerna. Vi placerar öarna på ett stort blått papper som symboliserar havet.

Broar

För att öarna ska bilda ett rike, måste det finnas sätt att ta sig emellan dem. Barnen får en bro i taget (en platt avlång rektangel), som kan förbinda två öar med varandra. Vilket är det minsta antalet broar som behövs för att man ska kunna promenera runt hela landet?

När vi har byggt det minsta antalet broar som krävs för att landet skall vara sammanhängande (vilket är 1 mindre än antalet öar). Hur många broar till kan vi bygga, om inte två broar får korsa varandra (broarna får vara böjda)? På den sista frågan vet inte jag det exakta svaret. Tillsammans med barnen ska vi i alla fall hitta ett lokalt maximum, det vill säga en situation där ingen ny bro kan sättas in, hur den än slingrar sig, på grund av korsandet av andra broar.

Köningsbergs broar

Man bestämde sig för att måla om alla broarna i landet till en ny färg. Går det att köra med målarbilen exakt en gång på varje bro? Det vill säga aldrig köra på en och samma bro två gånger och inte heller utelämna någon bro.

Barnen får göra minst ett försök var. Det tar ett tag innan man hittar den rätta vägen, om den nu existerar!

Detta är samma problem som Köningsbergs broar. Bara formulerat lite annorlunda.

Rita utan att lyfta pennan

För de äldre barnen passar uppgiften: rita figuren utan att lyfta pennan från pappret medan du ritar.

Auktion

Varje barn får ett och samma antal pappersmynt. De får i hemlighet bjuda ett visst antal mynt på varje ö. Den som bjuder flest mynt, får bli öns president (om det är lika, bjuder man om). Mynten man har kvar, kan man spendera på byggblock, som man får bygga presidentpalatset av på sin ö.

Detta lär barnen hur en bjudning kan fungera. Också lär de sig att snabbare jämföra antal och avgöra vem som bjöd flest mynt.

Karta

Det är dags att rita landets karta! Rita av landet på ditt eget papper. Du kan börja med ön där du är president och rita resten därifrån.

Samtidigt som barnen ritar jag en ”karta” där öar bara är prickar och broar är streck. Sedan får barnen se kartan. Kan alla peka på sin egen prick?

Flaggor

Landets färger är blått (havets färg), gult (solens färg) och rött (broarnas färg). Vi vill att landet inte bara ska ha en flagga, utan alla möjliga randiga flaggor som består utav 1, 2 eller 3 ränder!

Barnen får tillsammans måla alla flaggorna och kontrollera att de ha tagit alla kombinationer. Eventuellt kommer de på att man kan ha ränderna på det andra hållet (som i den rumänska flaggan och inte den ryska). Om ränderna är som på bilden ovan, finns det 15 olika flaggor man kan göra.

Set

Om det blir tid över, spelar vi set med de äldre barnen. På spelet står det att lägsta åldern är 6, men jag tror att det är meningsfullt att köra spelet först vid 7.

Lösningen till problemet för de yngre vecka 44

Mattegåta

Fem fotbollslag spelade en turnering, där alla lag mötte alla en gång. För en vinst tilldelades 3 poäng, för oavgjort 1 poäng och för förlust gavs inga poäng.

Fyra av lagen fick 1, 2, 5 och 7 poäng respektive. Hur många poäng fick det femte laget?

Diskussion

I alla för mig blir det lättare att lösa turneringsproblem, om man ritar en graf eller en tabell över resultaten.

Till exempel vet vi att ett av lagen fick 1 poäng, då kan man utan inskränkning anta att det är Lag 1. Då ser deras rad i tabellen ut som nedan.

Kolonnen är på sätt och vis motsatsen, alla förluster byts mot vinster (Lag 3, 4 och 5 vann ju mot Lag 1). Problemet går ut på att ta reda på sista radens poängsumma!

Lösning (av Nicklas Yttergren, kompletterad)

Observera hur många matcher har förlorats och hur många vunnits, de måste ha varit lika många. Totalt var det 7 förluster och 3 vinster utan att man räknat med med det femte laget (det ser man på poängen 1=1+0+0+0, 2=1+1+0+0, 5=3+1+1+0, 7=3+3+1+0).

Då måste det femte laget vunnit alla sina matcher, eftersom de spelade fyra och det är precis så många vinster som saknas. Därför fick de 12 poäng.

tabellresultat
Så kan det se ut

Matteproblem för de yngre vecka 44

Mattegåta

Fem fotbollslag spelade en turnering, där alla lag mötte alla en gång. För en vinst tilldelades 3 poäng, för oavgjort 1 poäng och för förlust gavs inga poäng.

Fyra av lagen fick 1, 2, 5 och 7 poäng respektive. Hur många poäng fick det femte laget?

© 2009-2024 Mattebloggen