Problem vecka 20

Cthulhu (1 poäng).
”Ni alledels för små för att se detta”, sade Cthulhu till sina 33 barn och skrek ut ”Blunda!”. Alla pojkarna blundade med högerögat, likaså en tredjedel av flickorna. Alla flickorna blundade med vänsterögat, likaså en tredjedel av pojkarna. Hur många barn såg ändå det som de var för små för att se?

Tabellen (3 poäng).
En 4×4-tabell är fylld med talen från 1 till 16. I varje rad, varje kolonn och varje diagonal (inklusive diagonalerna som består av en ruta) är det största talet markerat. Ett och samma tal kan alltså bli markerat flera gånger. Kunde det bli så att
a) alla tal utom två blev markerade?
b) alla tal utom ett blev markerade?
c) alla tal blev markerade?

Stenhögarna (5 poäng).
Det finns tre stenhögar. Sisyfos rullar en sten i taget från en hög till en annan. För varje sten han överför får han ett antal guldmynt från Zeus, som är lika med skillnaden mellan antalet stenar i målhögen och antalet stenar i starthögen (stenen, som rullas mellan högarna, räknas inte in). Om skillnaden är negativ, lämnar Sisyfos tillbaka en respektive summa till Zeus. Om Sisyfos inte kan betala, låter den välvillige Zeus honom att vara skyldig pengarna.

En gång blev det så att alla stenarna hamnade i samma högar, som de fanns i från början. Hur mycket kunde Sisyfos som mest ha tjänat då?

Visa lösningar

© 2009-2025 Mattebloggen