Perfekta tal och deras binära motsvarigheter

Nyligen fyllde jag 28 år vilket är en “perfekt” ålder på flera sätt :)

Nämligen är 28 det andra perfekta talet, matematiskt sett. Det vill säga, 28 är lika med summan av alla dess delare, exklusive talet självt:

28 = 1 + 2 + 4 + 7 + 14

Det första perfekta talet är 6, det tredje, 496, kommer jag nog inte att fylla…

På antiken kände man till bara fyra perfekta tal, i nuläget har man hittat totalt 48 (senaste talet hittades 2013). Man vet inte om perfekta tal någonsin tar slut. Man vet inte heller om det finns några udda perfekta tal, för alla man hittat hittills är jämna.

Det lustiga är att man inte hittat mönstret med vilket de perfekta tal förekommer. Men om man skriver perfekta tal i det binära talsystemet så ser det väldigt regelbundet ut:

Perfekt tal i bas 10 I bas 2
6 110
28 11100
496 111110000
8128 1111111000000
33550336 1111111111111000000000000
8589869056 111111111111111110000000000000000
137438691328 1111111111111111111000000000000000000
2305843008139952128 1111111111111111111111111111111000000000000000000000000000000

Det här verkar rätt kusligt. Varför beter sig perfekta tal binär regelbundet på det här sättet? Alltid med ett primt antal ettor och precis en mindre nolla efter!

Jag tyckte det här var lite alienaktigt och gick in på Wikipedia för att läsa på om perfekta tal. Svaret låg i resultaten om vilka perfekta tal vi hittat fram tills nu.

För det första har vi ju inte hittat några udda perfekta tal. För det andra har redan Euklides visat att om 2^{n}-1 är ett primtal (kallas för Mersenneprimtal), så är 2^{n-1}(2^{n}-1) ett perfekt tal.

Det betyder att så fort ett nytt Mersenneprimtal beräknas, så får vi ett perfekt tal på köpet. Det finns faktiskt exakt 48 hittills kända Mersenneprimtal, precis samma antal som perfekta tal. Detta visar sig inte vara någon slump. Euler visade att alla jämna perfekta tal faktiskt har den här formen, det vill säga motsvarar ett Mersenneprimtal.

Till exempel, 3 är det första Mersenneprimtalet (2^2-1) som motsvarar det första perfekta talet 2^1(2^2-1) = 2\cdot3 = 6.

Nu är det inte så svårt att bevisa det binära sambandet. 2^{n-1} skrivet binärt blir 100...00 med n-1 stycken nollor. 2^{n}-1 binärt blir 111...11 med n ettor.
Multiplicerat med varandra blir det såklart 111...1100...00 med n ettor och n-1 nollor. Dessutom är n ett primtal, annars skulle inte talet 2^{n}-1 vara ett primtal!

Förklaringen på mönstret är klar, men det intressanta är egentligen Euklides och Eulers bevis, som båda lämnas åt läsaren :)

Måla egna fraktaler

Har du alltid velat att rita egna fraktaler, men inte vetat hur man gör?

Grundprincipen för en fraktal är ett mönster som upprepar sig inuti figuren om och om igen. De mest kända exempel är:

Sierpinskis triangel

En liksidig triangel delas upp i fyra likadana delar och den mittersta lämnas oberörd. Samma sak händer med de andra tre delarna: var och en av dem delas upp i fyra och den mittersta lämnas oberörd. Fortsätt i alla oändlighet och du får Sierpinskis triangel!

Lite alternativ framställning av samma fraktal

Kochs snöflinga

Börja återigen med en liksidig triangel. Sudda bort de mittersta tredjedelarna på varje sida och rita två sidor som om det fanns en till liten liksidig triangel där. Fortsätt med de små nya sidor som bildats och så vidare. Du får Kochs snöflinga!

Klicka på bilden!

Mandelbrotmängden

Mängdens beskrivning är lite mer avancerad, men denna fraktal är otroligt vacker. Mängden består av alla komplexa tal (varje tal motsvarar en punkt i mänden) sådana att en viss process inte sticker ut mot ändligheten när man sätter in detta tal som parameter.

Klicka på bilden!

Så hur kan man skapa egna fraktaler? Du kan komma på en process som du gör om med en figur om och om igen, i mindre och mindre skala. Sådana processer kalla för rekursiva, vilket innebär att varje bild beror på de föregående på ett fixt sätt.

Ett enklare sätt är att måla fraktalerna på Recursive Drawing, där det finns en möjlighet att lägga in en bild i sig själv. Titta på introduktionsvideon eller börja måla direkt. Det går att skapa snygga fraktaler på 5 sekunder!

Denna fraktal är gjord av en enkel form (pinne med löv) lagd på sig själv:

Sierpinskis “triangel” tog däremot långt tid att skapa:

Försök att göra det själv!
Kan du komma på ett sätt att rita en triangelform i programmet? Hur gör man sedan så att bilden kopieras i sig själv tre gånger och inte en?

En lektion för små barn i mönster och spatial förmåga

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Mönster

Väldigt mycket i matematiken handlar om att se mönster. Jag skulle vilja påstå att det mesta inom grundskolans matematik går ut på att lära sig se ett slags mönster i uppgifter för att kunna tillämpa metoder.

Mönster som 3 + 7 = 10 hjälper en att lösa uppgifter som 14 + 3 + 7 = 24.

Och ifall man är bra på att extrapolera mönster, kan man komma på formler alldeles själv!

Upprepningar

Gjorde ni också girlanger utav gubbar till julgranen? Pojkarna nedan är ganska enkla att göra, men hur gör man för att klippa ut en girlang med varannan kille, varannan tjej?

Se mönstret och fortsätt

Ett bevis på att man ser mönstret i bilden är att man kan fortsätta det. Och tvärtom, om man försöker fortsätta mönstret ser man kanske när det blir fel och när det blir rätt.

Om man väver några remsor kan man se ett mönster i hur de synliga bitarna är färgade. Vilka färger finns underst respektive överst där bokstäver A och E står?

Föreställ dig mönstret

Ju mer matematik man läser, desto mer behöver man tänka abstrakt. Det innebär ofta att föreställa sig saker som inte finns framför en. Ibland föreställer matematiker sig saker som ingen har sett (som till exempel fyrdimensionella objekt)!

Förmågan att föreställa sig fysiska objekt och förhållandet dem emellan kallas för spatialförmåga. Den är väldigt viktig för pilot- och militäryrket, och så förstås matematikerna. För att träna den skall de lite äldre barnen lösa följande pussel:

Utan att kvadratbitar får klippas ut och arrangeras om, skall man bestämma vilken på som ska vara på vilken plats. Det betyder att bitarna måste arrangeras om i huvudet. Du kan prova själv genom att fylla i en en följande tabell med motsvarande tal.

Föreställ dig något som inte syns

En klassisk uppgift är att bestämma hur många kuber ingår i konstruktionerna, utan att alla kuberna syns.

Efter att alla barnen har skrivit ner förlaget, bygger vi upp sktrukturen och räknar hur många kuber det faktiskt behövdes.

Perspektiv

De äldre barnen får träna spatialförmågan på ett tredimensionellt sätt. De får se en bild på kubens alla sidor (i utvikt format), och sedan avgöra hur tre av kubens sidor ska se ut när man kollar på den från olika vinklar.

Vilken/vilka perspektiv är de rätta?

Tillverka en kub

Vi ska kombinera några av de ovastående övningarna och tillverka en kub själva. För det första skall barnen lista ut vilka av kvadraternas sidor skall tejpas ihop med vilka. Sedan får alla ett papper med ett mönster.

Uppgiften är nu att klippa upp mönstret i 6 likadana kvadrater. Varje kvadrat klistras sedan på en av sidorna på någons kub.

Det svåra är att klippa exakt utan att mäta. Tricket är att kolla på kanten, till exempel den vänstra. Då ska man klippa i bilden precis där den vänstra kanten av högra halvan är likadan som vänstra kanten av vänstra halvan. Skriv ut och försök själv!

minicubby.com