Linjär avbildning

Jag ska försöka reda ut begreppet linjär avbildning. Det är trots allt det linjär algebra i stort sett handlar om.

För det första är linjär avbildning synonymt begrepp med linjär transformation, och båda varianterna används flitigt. Detta tyder på att det är något aktivt som sker, någonting avbildas eller någonting transformeras.

Något förändras helt enkelt. Men inte hur som helst!

För att ta exempel ur vardagen: att ta ett foto på ett vackert landskap är en linjär avbildning från naturen till kameraskärmen. Tänk dig att en linje dras mellan varje pixel och motsvarande “punkt” i naturen. På något sätt kan vi tänka oss att det är en jämn och regelbunden hopknutning av linjer.

linjar_avbildning

En avbildning som däremot inte är linjär är när någon ritar skämtteckning föreställande dig. Den är ju helt fel! Försöker man tänka sig linjer på samma sätt som i förra exempel, så blir de huller om buller.

inte_linjar_avbildning

Det är därför just linjära avbildningar studeras så mycket, dels för att de är vackra och regelbunda, dels för att de är (just därför) mycket enklare än godtyckliga transformationer.

Nu till seriösa avbildningar. Den formella definitionen för att F skall vara en linjär avbildning är att den uppfyller två saker:

F(a\cdot\vec{v})=a\cdot F(\vec{v})

Detta betyder att en linjär avbildning bevarar förhållanden mellan punkter, som ligger på en och samma linje utgående från origo. Som jag ritade linjerna på bilden med landskap så menade jag att origo skulle vara i övre vänstra hörnet. Dra en “origolinje”, till exempel linjen som går från hörnet genom den högsta bergstoppen och in i solen. Det här villkoret säger oss att avståenden från hörnet till toppen och från hörnet till solen förhåller sig på samma sätt (med samma faktor) både i den lilla och i den stora landskapsbilden.

F(\vec{v}+\vec{u})=F(\vec{v})+F(\vec{u})

Det andra villkoret är lite svårare att förklara med en bild. Här ska man föreställa sig en massa vektorer (utgående från origo). Det måste alltid gälla att när vi tar två sådana vektorer och kollar på vad de avbildas på, så blir de två nya vektorer som dock också utgår från origo. Tar man summan av de ursprungliga två och summan av de senare två så ska dessa resultat hänga samman med precis samma avbildning. Det vill säga första summan avbildas på den senare summan.

Linjära avbildningar är mycket mer generella grejer än det först verkar. Det beror på att så kallade vektorer är väldigt generella objekt i sig. De behöver inte vara “pilar i planer” eller “pilar” överhuvudtaget. Vektorer kan vara matriser, funktioner, tal, … katter (om man vet hur man summerar två katter för att få en annan katt, samt hur man multiplicerar katter med skalärer).

Därför är det rätt svårt att kolla om villkoren 1 och 2 stämmer geometriskt. Oftast får man avbildningen genom en formel och då är det bara att “stoppa in” och visa att vänsterledet är lika med högerledet för att möjliga indata (vektorer) och skalärer (konstanter) a.

Det finns många kända exempel på linjära transformationer som är bra att känna till. Att derivera funktioner är ett sådant exempel (slå upp deriveringreglerna och hitta två av dem som liknar våra villkor väldigt mycket). Att integrera funktioner är ett annat. Att multiplicera med en fixerad matris är en linjär avbildning också och många avbildningar representeras just på det sättet.

Sist, men inte minst, kommer lite linjära avbildningar från planet till sig självt:

linjar_avbildning11

linjar_avbildning31linjar_avbildning21

Här ligger origo alltid i “ursprungliga övre högra hörnet”, det vill säga det hörnet där solen är närmast.

Vektorrum

Vad är det? Ett rum där vektorerna bor, såklart! Vill man veta vad som försigår där, så kan man lyssna på låten Tänk om jag vore en skalärprodukt.

Men om man ska vara matematiskt petig, så är vektorrum en mängd med vektorer, där diverse räknelagar för dem är uppfyllda.  Vi kan tänka på vektorer som förflyttningar: det viktigaste är inte var vi startar utan hur långt vi har förflyttat oss och åt vilket håll. 

Låt oss säga att vi startar i origo i vårt vektorrum. Vi försöker förflytta oss med hjälp av alla möjliga vektorer tillgängliga.  Som till exempel en enkel robot som vi styr genom en labyrint,  den kan bara få instruktioner “ett steg åt höger”, “ett steg åt vänster”, “ett steg uppåt”, “ett steg neråt”. På samma sätt får vi instruktionerna ur mängden av vektorer, varje vektor är en instruktion till oss.  Axiomen säger då att vi på så sätt inte ska kunna hoppa ur vektorrummet helt plötsligt om vi går med hjälp av instruktionerna.

Det finns dock extra saker som vi kan göra. Vi får nämligen själva bestämma hur långt vi kan gå åt varje håll som ges åt oss. Säg till exempel, att vi får vektorn som pekar “diagonalt-uppåt-höger”. Då kan vi gå jättelångt diagonalt, men också jättekort. T.ex. ett pyttelitet steg diagonalt, eller till och med inget steg alls.

Nu kan vi till och med formulera vad det betyder att vektorer spänner upp nånting. Vektorerna spänner upp ett underrum (en del av ett vektorrum) som består av alla punkter vi kan komma fram till om vi startar i origo (med hjälp av instruktioner från föregående stycken). T.ex. robotvektorerna spänner upp en hel labyrint, för att roboten kan komma fram överallt (om det är en snäll labyrint).