Linjär avbildning

Jag ska försöka reda ut begreppet linjär avbildning. Det är trots allt det linjär algebra i stort sett handlar om.

För det första är linjär avbildning synonymt begrepp med linjär transformation, och båda varianterna används flitigt. Detta tyder på att det är något aktivt som sker, någonting avbildas eller någonting transformeras.

Något förändras helt enkelt. Men inte hur som helst!

För att ta exempel ur vardagen: att ta ett foto på ett vackert landskap är en linjär avbildning från naturen till kameraskärmen. Tänk dig att en linje dras mellan varje pixel och motsvarande “punkt” i naturen. På något sätt kan vi tänka oss att det är en jämn och regelbunden hopknutning av linjer.

linjar_avbildning

En avbildning som däremot inte är linjär är när någon ritar skämtteckning föreställande dig. Den är ju helt fel! Försöker man tänka sig linjer på samma sätt som i förra exempel, så blir de huller om buller.

inte_linjar_avbildning

Det är därför just linjära avbildningar studeras så mycket, dels för att de är vackra och regelbunda, dels för att de är (just därför) mycket enklare än godtyckliga transformationer.

Nu till seriösa avbildningar. Den formella definitionen för att F skall vara en linjär avbildning är att den uppfyller två saker:

F(a\cdot\vec{v})=a\cdot F(\vec{v})

Detta betyder att en linjär avbildning bevarar förhållanden mellan punkter, som ligger på en och samma linje utgående från origo. Som jag ritade linjerna på bilden med landskap så menade jag att origo skulle vara i övre vänstra hörnet. Dra en “origolinje”, till exempel linjen som går från hörnet genom den högsta bergstoppen och in i solen. Det här villkoret säger oss att avståenden från hörnet till toppen och från hörnet till solen förhåller sig på samma sätt (med samma faktor) både i den lilla och i den stora landskapsbilden.

F(\vec{v}+\vec{u})=F(\vec{v})+F(\vec{u})

Det andra villkoret är lite svårare att förklara med en bild. Här ska man föreställa sig en massa vektorer (utgående från origo). Det måste alltid gälla att när vi tar två sådana vektorer och kollar på vad de avbildas på, så blir de två nya vektorer som dock också utgår från origo. Tar man summan av de ursprungliga två och summan av de senare två så ska dessa resultat hänga samman med precis samma avbildning. Det vill säga första summan avbildas på den senare summan.

Linjära avbildningar är mycket mer generella grejer än det först verkar. Det beror på att så kallade vektorer är väldigt generella objekt i sig. De behöver inte vara “pilar i planer” eller “pilar” överhuvudtaget. Vektorer kan vara matriser, funktioner, tal, … katter (om man vet hur man summerar två katter för att få en annan katt, samt hur man multiplicerar katter med skalärer).

Därför är det rätt svårt att kolla om villkoren 1 och 2 stämmer geometriskt. Oftast får man avbildningen genom en formel och då är det bara att “stoppa in” och visa att vänsterledet är lika med högerledet för att möjliga indata (vektorer) och skalärer (konstanter) a.

Det finns många kända exempel på linjära transformationer som är bra att känna till. Att derivera funktioner är ett sådant exempel (slå upp deriveringreglerna och hitta två av dem som liknar våra villkor väldigt mycket). Att integrera funktioner är ett annat. Att multiplicera med en fixerad matris är en linjär avbildning också och många avbildningar representeras just på det sättet.

Sist, men inte minst, kommer lite linjära avbildningar från planet till sig självt:

linjar_avbildning11

linjar_avbildning31linjar_avbildning21

Här ligger origo alltid i “ursprungliga övre högra hörnet”, det vill säga det hörnet där solen är närmast.

Att sätta händerna i degen

I den stora boken “Algebra” av Grillet liknar författaren viss matematikinlärning med att knåda deg. Att lära sig vissa saker går bara om man själv försöker härleda eller använda dem. Till exempel matrisräkning kan man inte utantill om man inte multiplicerat en enda matris.

Jag håller fullt med om detta. Var själv väldigt priviligerad om att gå i den hårda ryska skolan och räkna 20 polynom, ekvationer och uttryck om dagen. Samma sak med multiplikation och division i de tidigare skolåren. Detta kommer till en användning i vardagen, då jag inte alltid har dator/miniräknare med mig, men oftast tillgång till papper & penna eller tavla & krita. 

Jaja, det är kanske ingen som bryr sig om att kunna räkna fort nuförtiden, varken tal eller andragradsekvationer, men människor vill kunna göra det (utan miniräknare). Speciellt studenter. Och enda vägen att lära sig är hårda vägen. 

Vad är bästa sättet att få eleverna att göra 20 ganska likadana uppgifter?

Om motivationen är “klara provet” eller “klara tentan” är det plötsligt en väldigt tråkig sak för dem att göra, för att man “måste”. Det sättet som gjorde det roligt för mig i lågstadiet i alla fall var att jag tävlade mot min bänkkamrat. Oavsett om det var rysk grammatik eller matte, så tävlade vi om vem som gjorde uppgifterna snabbast på lektionen. Långt ifrån alla är tävlingsinriktade förstås och alla har olika tempo. Dessutom var det inte läraren som gjorde det roligt för oss, utan det var vi själva.

Som lärare har jag inte vågat säga åt eleverna att utföra det här repetativa uppdraget. Det har Thomas Erlandsson däremot gjort till mina nya elever och jag kan säga att det funkar hur bra som helst. Han sa åt dem att räkna ett hundratal uppgifter från boken och det gör de också. När allt kommer omkring, är inte uppgifterna så djävulkst tråkiga.

När det gäller matriser och linjära avbildningar, så har jag gjort en stencil som börjar enkelt och testar färdigheter, men sedan blir allt svårare. Jag delade ut den på lektion 9 i kursen “Linjär algebra och geometri I” och man fick sitta med var sin stencil och komma så långt man kunde. Notera att samtidigt som att man gör standarduträkningar, smyger ovanliga uppgifter in och de får upptäcka lite matematik själva. Jag kan stolt skryta om att eleverna inte märkte när lektionstiden var ute, för de var så inne i stencilen. Här är den och stort tack går till min vän Djalal, som fixade kaninbilderna. (Bäst är att läsa den i utskriven version för sidorna på slutet är bilder som hör till tidiga uppgifter.)

Har ni några tips på att göra tråkig räkning rolig?