Första hemuppgiften från Matteklubben, åk 7-9

Delbarhetsprincipen med 11 är inte enkelt att komma fram till, men enkel att använda. Om du vill försöka forska som matematiker, låt bli att googla på vad det är. Försök att svara på följande frågor istället. Skriv i kommentarerna om du har frågor eller förslag på lösning/svar.

• Vilken rest ger talet 100…0 (n nollor) vid divisionen med 11 om • n är jämnt? • n är udda?

• Försök att formulera en delbarhetsprincip med talet 11.

Vill du få extrainfo om problemlösning via e-post från Mattebloggen?

Det kan vara allt från problemlösningstips till info om olika tävlingar. Din e-postadress kommer att hanteras varsamt.

Namn

E-post

HMT-kval 2013

För circa en månad sedan hölls kvalomgången i Högstadiets Matematiktävling. Det är en tävling i problemlösning som riktar sig till årskurs 6-9, men självfallet lyckas eleverna i årskurs 8-9 få bäst resultat. Därför är det mest elever från dessa årskurser som går vidare till finalomgången.

Därmed inte sagt att de inte kan gå bra för elever i åk 6-7! Det de eventuellt saknar är några kunskaper om geometri samt delbarhet, vilket ett par av årets kvaluppgifter gick ut på. Däremot kunde man klara sig riktigt bra även om man ”bara” hade löst fyra uppgifter av sex. 10 poäng räckte nämligen för att gå till final (3 poäng tilldelas för varje korrekt löst uppgift). Du kan läsa mer om årets omgång på HMT:s hemsida, medan vi tittar närmare på själva uppgifterna.

Problem 1

Det går att skriva tal i rutorna i figur 1 så att om man följer pilen från en ruta och
använder räkneoperationen som står vid pilen så får man talet i nästa ruta.

hmt_kval13_1

Vilket tal är då X? Ange även en möjlig räkneoperation att ersätta frågetecknet med.

Lösning

Strategin är att gå baklänges från 13 till X på vägen gjord av pilarna till vänster. Till 13 kommer vi genom att dela med 2, så talet innan måste vara 26. Till 26 kommer vi genom att subtrahera 1, så talet innan är 27. Innan dess multiplicerade vi talet med 3, så talet innan måste ha varit 9. Och från X kom vi till 9 genom att subtrahera 11, så X måste ha varit 20.

På samma sätt kan vi bestämma talen på högra pilvägen. Till 13 måste vi ha kommit från 18, till 18 från 12, till 12 från 6. Om vi ska komma från 20 till 6 så kan operationen under frågetecknet vara -14 till exempel.

Kommetarer

Det här en typiskt uppgift nästan alla tävlande klarar av. Man hoppas ju innerligt att ALLA elever i åk 9 ska kunna klara av en sådan uppgift. Men så är tyvärr inte fallet, vilket bara beror på att dessa elever antagligen skulle missförstå uppgiften.

En grej man inte tänker på när man är van vid ekvationer är att ”x2” och ”x3” skulle kunna misstolkas att handla om ”X”. Bokstaven ”X” står i mitten för att göra uppgiftsformuleringen tydligare, men kan tvärtom skrämma elever som inte gillar ekvationer. Man skulle kunna ställa upp lösningen på första halvan av uppgiften såhär:

((X – 11)*3 – 1)/2 = 13

Men hur kul formulering är det? Vilken av formuleringarna uppmanar till någorlunda kreativt tänkande och vilken till att ”komma ihåg och tillämpa inlärd metod”? Just det, olika formuleringar på samma uppgift blir pedagogiskt sett helt olika uppgifter! De flesta elever tror jag skulle lyckas lättare på den första formuleringen. Något att tänka på när man introducerar ekvationer i skolan.

Problem 2

Om talet A vet vi följande:
- Talet A ger resten 5 när det delas med 11.
- Talet A ger resten 4 när det delas med 9.
- Talet A ger resten 5 när det delas med 7.
- Talet A ger resten 4 när det delas med 5.
Vilken rest får man när man delar A med 3?

Lösning

Svaret kan vara antingen 0, 1 eller 2, eftersom inga andra rester förekommer när man dividerar med 3. Talet A kan vara hur stort som helst, men vi försöker ”få plats” med så många 3:or i talet som det bara går.

För det kan vi använda att talet A har rest 4 när det delas med 9. Det betyder att man får plats med ett antal 9:or och det blir 4 över. Men en 9:a är ju tre 3:or, därför vet vi att talet A innehåller ett ännu större antal 3:or, men det viktigaste är att det blir 4 över. Där får det plats en 3:a till och det blir 1 över. Därför är resten lika med 1.

Kommetarer

Svårigheterna med att lösa den här uppgiften består av att man inte vet vad division med rest innebär, eftersom man inte fokuserar så mycket på just rester i skolan. Och även om man vet vad resten är, så kanske man försöker bestämma talet A, vilket inte ger ett heltäckande resultat (det finns flera tal A som har de nämnda egenskaper, till och med oändligt många sådana tal finns det). Och så är det förstås vilseledande att det bara villkor två som är viktigt.

Tar man sig igenom de hindren, så är inte uppgiften svår.

Problem 3

På Skänkvägen står elva hus på rad, numrerade från 1 till 11. Eftersom sämjan bland
grannarna är god, så bjuds det ofta på middag. När man bjuder på middag bjuder man
in de två närmaste grannhusen på båda sidor. Om man inte har två grannar på någon
sida bjuder man alltså in färre grannar, till exempel bjuder hus 2 in grannarna i hus 1, 3
och 4.

En dag ärver familjen i hus 2 en riktigt, riktigt ful tavla. När familjen nästa gång blir
bjuden på middag bestämmer man sig därför att ge bort tavlan till kvällens värd. Men
tavlan är så ful att ingen på gatan vill behålla den, så vid första möjlighet ger man därför
bort den till den middagens värd. Av artighetsskäl kan man såklart inte ge tillbaka tavlan
till någon man själv fått den av, och inte heller till någon man själv redan en gång givit
bort den till.

Vem kommer till slut att vara tvungen att behålla tavlan?

Lösning

Vi hoppar vilt i svårighetsnivån! Vi ”finkammar” uppgiften lite först, för att senare lättare kunna formulera lösningen.

Man kan bara ge bort/ta emot tavlan av hus som ligger 1 eller 2 steg bort ifrån ens eget. Om hus A gav bort tavlan till hus B så är den förbindelsen A-B ”förbrukad” eftersom tavlan inte får ges på samma sätt och inte heller ges tillbaka från hus B till hus A. Således kan vi rita ut alla förbindelser och tänka oss att tavlan vandrar längs med dem och ”förbrukar” dem (husen ligger på rad, men att vi ritar dem på en cirkel spelar ingen roll, det är förbindelseschemat som är det viktiga):

tavlan

Låt oss för en stund strunta i var tavlan börjar sin väg (hus 2). Vi tänker istället på var tavlan kan sluta (någon annanstans i hus 2?). Kanske slutar tavlan i hus 4, så vi tittar på förbindelser som har med hus 4 att göra:

tavlan_hus

Om hus 4 är huset som inte kan skicka tavlan vidare, så betyder det att tavlan kom till dem och i och med det var alla förbindelser förbrukade. Hur förbrukades förbindelserna? Varje gång hus 4 fick tavlan så förbrukades nästa förbindelse genom att de gav bort den, och tvärtom. Så eftersom tavlan inte började där, måste förbindelserna förbrukats i ordningen: fick – gav bort – fick – gav bort. Därför kunde inte hus 4 fått tavlan på sin sista förbindelse.

Husen 3, 5, 6, 7, 8, och 9 befinner sig i samma situation. De har fyra förbindelser var och därför följer samma schema, om nu alla fyra förbindelserna skulle förbrukas: fick – gav bort – fick – gav bort.

Samma sak är det egentligen för husen 1 och 11 som har två förbindelser var. Får de tavlan, så har de ju möjlighet att ge bort den.

Därmed är det bara hus 2 och 10 kvar. Hus 2 har tavlan från början och därför följer schemat ”gav bort – fick – gav bort”, OM vi är säkra på att alla förbindelser förbrukas. Därför är hus 10 det enda huset som kan ha kvar tavlan utan att kunna ge bort den.

En möjlig väg för tavlan kan vara 2 -> 4 -> 6 -> 8 -> 10 -> 11 -> 9 -> 10. Nu kan hus 10 inte ge bort tavlan.

Kommetarer

Läsaren som är bekant med grafteori förstår att så fort vi har ”kammat” problemet så handlar det om i princip Eulerstigar. Men enkel formulering kan man säga att en figur, som man ritar utan att lyfta pennan från pappret, har som mest två punkter, varifrån det utgår ett udda antal linjer. En av punkterna kommer då vara startpunkten och den andra slutpunkten.

Problem 4

I parallelltrapetset ABCD är sidan AB 50% längre än sidan CD. Punkten P
är diagonalernas skärningspunkt. Arean av triangeln ADP är 12. Bestäm arean av hela
parallelltrapetset.

parallelltrapets

Lösning

Parallelltraps är en figur med två parallella sidor (det syns på bilden att det är AB och CD som är parallella). Om man ritar ut diagonalerna bildas det flera alternatvinklar, varav två par är inbördes lika. Det följer då att trianglarna APB och CPD är likformiga.

alternatvinklar

Vi färgkodar de fyra små trianglarna som syns på bilden:

parallelltrapets_slutsatser

Vi kom fram till att brun och röd var likformiga. De är dessutom likformiga med koefficienten 1,5 (eftersom röds motsvarande sida var 50% länge än bruns).

Vi vet även att blå+brun har samma area som grön+brun, eftersom båda dessa stora trianglar har samma bas DC och lika lång höjd (avståndet mellan de parallella linjerna). Därför har blå och grön samma area och vi vet från uppgiften att det är 12.

Blå och röd har samma höjd om vi tar DP pch PB som baser. Med DP och PB är motsvarande sidor hos den bruna och den röda triangeln. PB är alltså 1,5 gång större och då han även röd 1,5 gånger större area än blå, 12*1,5 = 18.

Blå och brun delar höjd om man nu väljer AP och PC som baser. Även här är PC 1,5 gånger mindre än AP. Så arean för brun är även den 1,5 mindre än arean för blå, det vill säga 12/1,5 = 8.

Därmed har vi bestämt alla de små trianglarnas areor. Arean för hela parallelltrapetser är
röd + brun + grön + blå = 18 + 8 + 12 + 12 = 50 (areaenheter)

Kommetarer

Måste erkänna att jag försökte lösa den här uppgift snabbt och misslyckades! Hade en alldeles för avancerad lösning och räknade fel någonstans på vägen. Så här ska man kunna ”lagom” mycket geometri :)

”Lagom” mycket geometri innebär bland annat: parallellitet, alternatvinklar, vertikalvinklar, likformiga trianglar, likformighetskoefficient, arean för en triangel, val av bas/höjd i en triangel. Inte så lite man ska kunna!

Framför allt ska man vara skolad för att genomföra bevis för att redovisa uppgiften på ett korrekt sätt. Geometriundervisningen som bygger på axiom/bevisföring har i princip försvunnit från svenska skolor, därför lyckades nästan ingen av deltagarna lösa (eller ens få poäng) på den här uppgiften. Jag tvivlar på att särskilt många gymnasister skulle kunna lösa den här uppgiften heller.

Problem 5

Genom att flytta om siffrorna i talet 2013 kan man få 18 olika fyrsiffriga tal. På hur många
sätt kan man välja två olika av dessa 18 tal så att deras summa är precis lika med ett av
de återstående 16 talen?

Lösning

Provar man lite så ser man att det här aldrig går. Hur förklarar vi det här på ett allmängiltigt sätt?

Om två tal som bara består av siffrorna 0, 1, 2 och 3 adderas, så kommer entalen, tiotalen, hundratalen samt tusentalen adderas var för sig, eftersom siffrorna är så pass små. Men det betyder att siffersumman för resultatet av additionen kommer vara lika med siffersumman för det första talen adderat med siffersumman för det andra talet.

Detta kan ju inte hända, eftersom siffersummorna för alla talen är 6. Därför kommer siffersumman för resultatet att bli 12 och det kan inget av talen i uppgiften ha.

Kommetarer

Den här uppgiften kan lösas på mängder av olika sätt, jag angav det kortaste jag kunde komma på. Sätter eleven in sig i uppgiftens formulering, så är resultatet mer eller mindre uppenbart. Hur man ska förklara resultatet är däremot inte lika uppenbart.

Jag tror att många elever känner intuitivt att det har med siffersumman att göra, men de är inte vana vid att formulera lösningar på det sätt, med bevarande av siffersumma och dylika termer. Därför gissar på att de använde mer krångliga förklaringar. Det kan vara frustrerande att försöka förklara något som är så pass uppenbart, men en bra övning om man vill bli bättre på att förstå och formulera egna bevis.

Problem 6

Rutnätet i figuren skall fyllas med tal. I varje ruta (utom i understa raden) står summan
av de två talen i rutorna direkt under den. Vilket tal skall stå i den översta rutan?
talpyramid

Lösning

Den här uppgiften kan både lösas baklänges (nerifrån och upp) och framlänges (uppifrån och ner). Istället för att bara införa två variabler inför vi jättemånga, det vill säga betecknar varje okänt tal med en bokstav.
talpyramid_variabler

Talet A består av talen B och C.

Talen B och C består av talen D och 503 och 503 och E.

Talen D och 1006 och E består av talen 253 och F och 1006 och G och 251. Totalt alltså 1510 och F och G.

Inte har vi kommit fram till svaret än, men vet att pyramidegenskapen även gäller talet 503: att det består av talen F och G.

Så vi vet att talet A består av 1510 och F och G, med andra ord av 1510 och 503, det vill säga lika med 2013. Klart!

Kommetarer

Även här tror man kanske att hela pyramiden måste bestämmas för att avgöra det översta talet, men så är inte fallet. Det finns flera olika pyramider som ser ut på det sättet och alla måste då ha 2013 i toppen. Notera att det är på samma sätt som i uppgift 2 och uppgift 4 – flera olika konstruktioner uppfyller uppgiftsvillkoren, men ger ändå ett och samma svar i slutändan.

Ibland (eller kanske alltid) går matematik ut på att dra korrekta och allmängiltiga slutsatser i situationer där vi inte har tillgång till fullständig information.

Vill du få extrainfo om problemlösning via e-post från Mattebloggen?

Det kan vara allt från problemlösningstips till info om olika tävlingar. Din e-postadress kommer att hanteras varsamt.

Namn

E-post

Lösningen till problemet för de yngre vecka 47

Mattegåta

I ett visst spel används mynt som är värda 1, 15 och 50 Hello Kitty-dollar. En spelare köpte ett svärd och fick i växel ett mynt fler än vad han betalade. Vilket är det minsta antalet dollar som svärdet kunde kosta?

Diskussion

Vid en första anblick verkar det vara konstigt varför 50 dollar-myntet överhuvudtaget är viktig för uppgiften. Det verkar ju rimligt att försöka handskas med så få mynt som möjligt, det vill säga betala med 15 dollar och få två stycker 1 dollar-mynt tillbaka. Det skulle ge priset 13 dollar.

Men det är inte säkert att det är det absolut minsta priset! Tänk på hur det kan bli om spelaren betalar med två mynt och får tre mynt tillbaka. Till exempel kan han betala 1+50 dollar och få 15+15+15 tillbaka. Och då kostar ju svärdet 6 dollar, vilket redan är lägre!

Då kanske det går att få ner priset ännu mer? Nu får vi ta och resonera ordentlig om hur betalningen kunde sett ut. Till exempel verkar det onödigt om spelar betalar med några 15 dollar-mynt och får också några tillbaka, det skapar bara onödig växling. Alltså kan vi reducera till fallen då mynt av olika sort var betalt respektive växel.

Vad finns det då för varianter? Som i exemplet ovan så går det att betala med 1 och 50 dollar-mynt och få bara 15 dollar-mynt tillbaka. I lösningen nedan ser vi att det inte blir fler signifikanta fall än så.

Lösning 1

Vi kan räkna med att spelaren betalade med några sorter mynt och fick bara andra sorter tillbaka i växel.

-Han kunde betala med valutorna på 1 och 15 dollar, och få bara 50 dollar-mynt tillbaka, men då skulle han få tillbaka mer än vad han betalade (eftersom han fick ett fler mynt i växel).
-Han kunde betala med valutorna på 15 och 50 dollar, och få bara 1 dollar-mynt tillbaka, men då skulle svärdet kosta åtminstone 13 dollar.
-Signifikant fall I. Han kunde betala med valutorna på 1 och 50 dollar, och få bara 15 dollar-mynt tillbaka.
-Han kunde betala med 1 dollar-mynt, och få bara 15 och 50 dollar-mynt tillbaka, men då skulle han få tillbaka mycket mer än vad han betalade.
-Han kunde betala med 50 dollar-mynt, och få bara 1 och 15 dollar-mynt tillbaka, men då skulle svärdet kosta åtminstone 20 dollar.
-Signifikant fall II. Han kunde betala med 15 dollar-mynt, och få bara 1 och 50 dollar-mynt tillbaka.

Om det är signifikant fall I, antag att han betalade a stycken 1 dollar-mynt och b stycken 50 dollar-mynt. Då fick han a+b+1 stycken 15-dollar mynt tillbaka. Då kan vi uttrycka priset:

a*1+b*50-(a+b+1)*15=priset

a*1+b*50-a*15-b*15-15=priset

b*35-a*14=priset+15

Notera att vänsterledet är delbart med 7, så högerledet måste vara det också. Så det minsta talet högerledet kan vara är 21, alltså är minsta priset i det här fallet 6 Hello Kitty dollar!

Om det är det signifikanta fallet II får vi i princip samma ekvation om vi antar att spelaren fick tillbaka a stycken 1 dollat-mynt och b stycken 50 dollar-mynt (då betalade han a+b-1 stycken 15 dollar-mynt). Även där blir minsta svaret 6 dollar.

Så 6 Hello Kitty dollar är det minsta svärdet kunde kosta! Det kunde ske genom att spelaren betalade 50 dollar och 1 dollar och fick tillbaka tre mynt värda 15 dollar var.

Lösning 2

Lösning 1 ger en idé till en annan lösning. Idén handlar om att delbarhet med 7 är intressant. Talen 1, 15 och 50 ger alla nämligen rest 1 vid division med 7.

Så om vi kollar hur mycket det blir kvar när vi tar bort så mycket sjuor som möjligt både från betalningen och växeln, så blir resten alltid 1 större för växeln (eller om betalningen hade rest 6 vid division med 7 kommer växeln att inte ge någon rest alls).

Svärdet ska kompensera för den skillnaden. Eftersom svärdets pris ska adderas till växeln för att få betalningen, måste priset ge rest 6 vid division med 7. Det minsta sådana talet är 6.

© 2009-2024 Mattebloggen