Pilen

Rekommenderad från: 10 år

[kkratings]

Siffrorna 1 till 9 fyller kvadraten som det syns på den vänstra bilden. Man får gå på kvadratens rutor, men aldrig tillbaka till en ruta man varit på förut, och man måste alltid gå till en angränsande ruta.

Katarina gick längs med pilen som syns på den högra bilden. Hon skrev ner siffrorna som hon gick på i ordning och fick talet 84937561. Rita en annan väg, som ger ett större tal (ju större tal, desto bättre).

Visa lösningen

En lektion för små barn i grafteori

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Grafer

Jag försökte att introducera grafer på den allra första lektionen men begreppen tog sig inte. Det var inte naturligt för fem- och sexåringarna att representera människor med prickar och syskonsrelationer med pilar. Eller så passade inte temat till att vara först av alla helt enkelt.

Därför tänkte jag prova igen att bekanta barnen med grafer, denna gång med en mycket mjukare introduktion. Därför handlar egentligen inte så stor del av lektionen om grafer.

Barn ska kunna differensiera enkla linjära former

Titelt är ett skämt och betyder ungefär att barn ska kunna skilja på cirklar, trianglar och kvadrater.

Dagens lek går ut på att bygga ett land som består av öar. Öarna har alla olika färg och form: cirkel, rektangel, ring, femhörning etc. Barnen ska kunna nämna alla formerna. Vi placerar öarna på ett stort blått papper som symboliserar havet.

Broar

För att öarna ska bilda ett rike, måste det finnas sätt att ta sig emellan dem. Barnen får en bro i taget (en platt avlång rektangel), som kan förbinda två öar med varandra. Vilket är det minsta antalet broar som behövs för att man ska kunna promenera runt hela landet?

När vi har byggt det minsta antalet broar som krävs för att landet skall vara sammanhängande (vilket är 1 mindre än antalet öar). Hur många broar till kan vi bygga, om inte två broar får korsa varandra (broarna får vara böjda)? På den sista frågan vet inte jag det exakta svaret. Tillsammans med barnen ska vi i alla fall hitta ett lokalt maximum, det vill säga en situation där ingen ny bro kan sättas in, hur den än slingrar sig, på grund av korsandet av andra broar.

Köningsbergs broar

Man bestämde sig för att måla om alla broarna i landet till en ny färg. Går det att köra med målarbilen exakt en gång på varje bro? Det vill säga aldrig köra på en och samma bro två gånger och inte heller utelämna någon bro.

Barnen får göra minst ett försök var. Det tar ett tag innan man hittar den rätta vägen, om den nu existerar!

Detta är samma problem som Köningsbergs broar. Bara formulerat lite annorlunda.

Rita utan att lyfta pennan

För de äldre barnen passar uppgiften: rita figuren utan att lyfta pennan från pappret medan du ritar.

Auktion

Varje barn får ett och samma antal pappersmynt. De får i hemlighet bjuda ett visst antal mynt på varje ö. Den som bjuder flest mynt, får bli öns president (om det är lika, bjuder man om). Mynten man har kvar, kan man spendera på byggblock, som man får bygga presidentpalatset av på sin ö.

Detta lär barnen hur en bjudning kan fungera. Också lär de sig att snabbare jämföra antal och avgöra vem som bjöd flest mynt.

Karta

Det är dags att rita landets karta! Rita av landet på ditt eget papper. Du kan börja med ön där du är president och rita resten därifrån.

Samtidigt som barnen ritar jag en ”karta” där öar bara är prickar och broar är streck. Sedan får barnen se kartan. Kan alla peka på sin egen prick?

Flaggor

Landets färger är blått (havets färg), gult (solens färg) och rött (broarnas färg). Vi vill att landet inte bara ska ha en flagga, utan alla möjliga randiga flaggor som består utav 1, 2 eller 3 ränder!

Barnen får tillsammans måla alla flaggorna och kontrollera att de ha tagit alla kombinationer. Eventuellt kommer de på att man kan ha ränderna på det andra hållet (som i den rumänska flaggan och inte den ryska). Om ränderna är som på bilden ovan, finns det 15 olika flaggor man kan göra.

Set

Om det blir tid över, spelar vi set med de äldre barnen. På spelet står det att lägsta åldern är 6, men jag tror att det är meningsfullt att köra spelet först vid 7.

Lejonet på arenan

Grattis på pidagen!

Rekommenderad från: 17 år

Förkunskaper: radianer, transformationer.

[kkratings]

Ett lejon springer runt på en rund cirkusarena, som har radien 10 m. Lejonets bana består av raka streck och i slutändan springer han 30 km. Visa att summan av alla vinklar, som lejonet svängde under springturen, är minst 2998 radianer.

Källa: Kvant magazine

Visa lösningen

En lektion för små barn om kvadrater (och andra fyrhörningar)

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Fyrhörningar

Vad är en fyrhörning? Hur många sidor har den och hur många hörn? Kan alla rita en fyrhörning?

Vad är en rektangel? Varför heter den så (på ryska heter det något i stil med ”rätvinkling”)? Om du ska bygga en rektangel av pinnar, vad väljer du då för längder på pinnarna?

Vad är en kvadrat? Är en kvadrat en rektangel? Är en kvadrat en fyrhörning?

Vad kallas en fyrhörning där alla sidor är lika långa? Är en romb alltid en kvadrat? Är en kvadrat alltid en romb?

Rita en romb

Alla får ett rutat papper. Börja med att sätta ut en punkt någonstans (helst i korsningen mellan två linjer). Sedan sätt ut två punkter, en till höger och en till vänster, på samma avstånd från startpunkten. Det vill säga, räkna samma antal rutor till vänster respektive till höger och sätt ut nya punkter. Gör samma sak uppåt och neråt från startpunkten, men nu kan det vara ett annat avstånd. Rita sidorna i den fyrhörningen som alla nya punkterna bildar. Du får en romb!

Fråga: kan man rita en kvadrat på det här sättet?

Bevisa vilken form det är

Barnen får titta på olika figurer: godtyckliga fyrhörningar som är konvexa eller konkava, rektanglar, romber, kvadrater. De måste säga alla namn som figuren kan kallas och bevisa det också, men hjälp av linjal och ett bord (med linjalen kan de mäta ifall sidorna är lika långa och medelelst bordet kan de visa att en speciell vinkel är rät).

Till exempel denna figur än en fyrhörning och en romb:

Varför fyrhörning?
– Den har fyra sidor och fyra vinklar.

Varför romb?
– Alla sidorna är lika långa (verifieras mha linjal, eller så viker man den och sätter sidorna mot varandra)

Denna figur än en fyrhörning:

Varför fyrhörning?
– Fyra sidor, fyra hörn

Varför inte rektangel?
– Två av vinklarna är räta, men inte alla fyra (rät vinkel ”bevisas” genom att sätta figuren mot bordshörnet). Eller, en annan motivering: de två motstående sidorna är inte lika långa.

Ett närmare titt på kvadrater

Alla aktiviteterna nedan handlar om kvadrater, men de är egentligen väldigt olika. En del går ut på kombinatoriskt tänkande, en del på geometriskt. Det är viktigt att tänka antal, storlek, symmetri, mönster. Och det viktigaste av allt är att vara kreativ!

Kvadratuppdelning

Hur kan man dela upp en kvadrat i fyra likadana figurer? Nedan ser ni några exempel, men egentligen finns det oändligt många sätt.



Tändsticksproblem

Tändstickorna är en klassiker!

På bilden nedan finns fem kvadrater.
Hur ska man kunna ta bort två tänkstickor, så att det blir tre kvadrater kvar? Och två kvadrater?

Kvadrattal

Med de äldre barnen kan vi undersöka kvadrattal. Av små kvadratiska leksakstorn får de bygga de olika stora kvadraterna en i taget. Hur mycket bygger man på i varje steg (svar: de udda talen 1,3,5,7 och så vidare).

Vika transitivt

De flesta vuxna kan få en kvadrat utav ett rektangulärt papper: man viker ihop ena hörnet så att det bildas en rätvinklig triangel (som är två lager av papper). Sedan är det bara att klippa bort/vika in den överflödiga lilla rektangeln.

Men hur gör man för att få en kvadrat av en rätvinklig triangel med inga hjälpmedel?

Och hur får man en kvadrat ut en godtycklig triangel?

Det här problemet löses i flera steg och bygga på transitivetetsprincipen. Om vi kan göra om en rektangel till en kvadrat och sedan lär oss att göra om en rätvinklig triangel till en rektangel, kan vi alltså alltid göra om en rätvinklig triangel till en kvadrat.

Godtycklig triangel -> rätvinklig triangel
Hitta en höjd inuti triangeln. Vik längs med den (det vill säga, vik ihop hörnet så att den motsatta sidans delar läggs på varandra). Voila! En rätvinklig triangel.

Rätvinklig triangel -> rektangel
Vik båda kateterna på mitten, det vill säga vik in de spetsiga hörnen. Vi har en rektangel (pga topptriangelsatsen).

Rektangel -> kvadrat
Om ena av rektangeln sidor inte är dubbel så lång eller längre som den andra, gör som ovan. Annars, vik som ovan flera gånger, tills ”restrektangeln” är tillräckligt liten. Eller klipp bort efter första steget, om sax är tillåtet.

Vika boxar

Nu när vi kan göra kvadrater av lite vad som helst, kan vi lära oss att vika ihop boxar. Fördelen med de här boxarna är att man inte behöver vara supernoggrann, för att det ska bli ett hyfsat resultat. Problemet med de små barnen och origami är att de oftast inte har precision nog att vika en vinkel exakt på hälften. Äsch, inte ens alla vuxna har den precisionen!

Annorlunda tideräkning

Rekommenderad från: 12 år

[kkratings]

Invånarna på Matteön delar in dygnet i timmar, timmar i några minuter och minuter i några sekunder. Men deras dygn består av 77 minuter och deras timme innehåller 91 sekunder. Hur många sekunder ingår i ett dygn på Matteön?

Källa: Математический праздник

Visa lösningen

En lektion för små barn i kombinatorik

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Här kan du se vad vi tidigare har gått igenom.

Kombinatorik

Kombinatorik är läran om kombinationer och permutationer, men för mig är det helt enkelt ett grundläggande tankesätt när man håller på med problemlösning. När du till exempel väljer vad du ska ha på dig på en festkväll är det kombinatoriken som säger om du har testat alla … kombinationer.

Samma teori hjälper dig när du lägger pussel. Kombinatoriken hjälper dig att testa de likadana ljusblå bitarna till himlen systematiskt istället för att bara slumptesta. Problemet löses snabbare och du är säkrare på att du har löst det!

Vissa av mina matematiker älskar kombinatorik, vissa ser det bara som ett oundvikligt redskap. Själv är jag väldigt tacksam för att min pappa lärde mig kombinatorik tidigt, redan vid 11 års åldern ungefär.

Om du är osäker på vad ämnet innebär rent praktiskt, kolla aktiviteterna nedan. Lekarna skall tjäna som en slags introduktion till ämnet.

Uppdrag med gubbar och hus

För att leka uppställning i olika rader och ringar är det bra att ha likadana objekt i olika färger. Så varför inte spelgubbar?

Jag plockade fram spelet Arkadia ut hyllan och upptäckte massa potential i spelkomponenterna:

På bilden ser ni gubbar i fem olika färger (jag kommer använda 11 i varje färg), torn som går att stapla på varandra, olika slags pengarbrickor, tetrisliknande brickor och kort. Längst bak till vänster ser ni ”tält” som det går att hänga upp små flaggor på.

Vi ska leka ”Köpmännens stad”, där barnen får svara på olika svåra frågor eller utföra olika svåra uppgifter (beroende på vad det är för ålder). För varje klarat uppdrag hängs en flagga upp. Målet är att ha så många flaggor som möjligt uppe.

5 år

För de minsta barnen handlar kombinatorik om att räkna, gruppera och jämföra. Följande uppgifter kan vara lämpliga:
– Gubbarna står i olika grupper. Hitta en siffra som motsvarar antalet gubbar i gruppen (1,2,3,4 etc.) och lägg den bredvid gruppen. Vilken grupp är störst? Vilken är minst?
– Vilka är fler: de gröna eller de gula gubbarna (lösningen är att para ihop dem, en gul med en grön och se om någon sort blir över)?
– Arrangera alla gubbarna (det är 55 stycken) i trianglar, så att hörnen ugörs av var sin gubbe. Arrangera gubbarna i cirklar. Arrangera gubbarna i en jättestor rektangel, om det går.
– Varje gubbe ska få var sitt mynt. Plocka fram så mycket mynt, som gubbarna skall ha tillsammans (5- och 10-myntbrickor får användas).
– Nu går gubbarna hem. Kan ni placera dem i grupper så som de var i början? (Siffrorna 1,2,3,4 etc. ligger kvar och hjälper till).

6 år

Några frågor kan vara samma som för femåringarna. Dessutom är det dags att börja med riktiga kombinationer.
– Gubbarna bestämde sig för att prata med några nya människor (köpmän av annan färg). Kan man dela upp gubbarna i par så att alla är med någon annan färg (Svar: alla utom en gubbe går att dela in i par)?
– Nu skulle gubbarna bilda lag, där tre olikafärgade köpmän skulle ingå. Hur många olika sortes lag kan bildas (Svar: 10 stycken)?
– Kan de tio lagen ställas ihop i en stor ring, så att inga två gubbar av samma färg står bredvid varandra?
– Efter att barnen ställer tillbaka gubbarna så som de stod i början, plockar jag bort några stycken under tiden som barnen blundar. Sedan skall barnen titta på bordet och försöka lista ut hur många jag tog bort.

Efter uppdragen kan vi röra på oss lite. Barnen, uppdelade i två grupper, ställer sig i en ring. Sedan skall de byta plats inom sin grupp så att det inte blir samma ring som förut. Hur många olika ringar kan bildas? (Svar: är de 3 stycken, finns det 2 olika ringar, är de 4 stycken, finns det 6 olika ringar.)

7 år

En del uppdrag lånar jag från sexåringarna, speciellt det sista om ringar. Med med sjuåringarna anteckngar vi de olika ringarna mha gubbarna i olika färger. Andra uppgifter kan vara:
– Hur många gubbar är det totalt? Gubbarna/siffrorna får grupperas om för att det skall vara enklare att räkna.
– Nu står det rätt antal gubbar i varje rum, men inte alla har rätt färg. Går det att återställa situationen i början, genom att man får gå en gubbe i taget? Om en gubbe går in i en grupp och det blir för många gubbar i gruppen, måste en ny går ur gruppen och fortsätta vidare på samma sätt. Matematiskt handlar det om att faktorisera en permutation i en produkt av cykler. Vilket alltid går.
– Vilket antal små torn går att bygga ihop till en stor triangel? (Svar: 1,3,6,10 osv. Dessa tal kallas just ”triangeltal”.)Är totala antalet gubbar ett triangeltal? (Svar: ja)
– På hur många sätt kan ni ställa er på en rad? Kan ni hitta på en egenskap för varje sätt? (T.ex.: länggordning, bokstavsordning etc.)

10 år

Frågorna om triangeltal, rader och ringar är som för sjuåringarna. Förutom det får tioåringarna problem i stil med:
– Kan 6 gubbar ställas ut på planet, så att det är 2 stycken vid varje kant?
– Kan gubbarna arrangeras om, så att antalet är detsamma (1,2,…,11), men färgerna är så olika som möjligt. Kan det vara så att det högst är 2 gubbar av varje färg i en och samma grupp? (Svar: nej, enligt lådprincipen måste gruppen med 11 personer innehålla minst 3 av samma färg.)

Pussel

Efter väl avklarade uppdrag skall vi göra gamla hederliga pussel. Förutom att det inte finns någon bild och formen på bitarna är oregelbunden!

Ett inte så lätt sjubitarspussel

Minne

Ett välkänt spel som tränar minne är att en person säger ett ord. Till exempel, om kategorin är ”saker i rummet” kan första personen säga ”bord”. Den andra personen måste då säger det förra ordet, samt ett ord till: ”bord, tavla”. Nästa säger ”bord, tavla, dator”. Och så fortsätter man tills någon gör fel: glömmer bort ordningen eller orden, eller säger ett ord som redan har sagts. Då kan man byta kategori.

Den här leken passar stora som små och tränar både språk, minne och kategorisering.

Einsteins pussel

De äldre barnen är mogna för ett logikpussel. Sjuåringarna får klura på ett 3×3-pussel, de äldre kan ta sig an något i stil med 5×4.

En lektion för små barn om trianglar

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Notera att barnen redan har haft två lektioner om vinklar och olika vinkeltyper.

Trianglar

Det är dags att sätta ihop punkter, sträckor och vinklar till trianglar!

Sammanbinda punkter

Uppgiften är att kopiera av punkter på bilden till sitt eget papper och sedan sammanbinda dem till en triangel. De yngre barnen får ett lika stort papper som originalet, men de äldre får en annan storlek och därmed implicit får träna skala.

Exempelvis en sådan bild skall kopieras

Hur många hörn har en triangel? Hur många sidor?
Hur många spetsiga vinklar kan du hitta i din triangel? Hur många trubbiga? Är det någon som har en triangel med en rät vinkel?

Efter att alla är klara med övningen kan barnen få extraövning (eller så blir det läxa): sammanbinda alla tripplar av punkter, som är av samma färg.
Den här bilden:

Blir till en tolvuddig stjärna:

Rita och klipp ut en egen triangel

Barnen får välja färg på pappret och ett uppdrag av mig: rita en spetsvinklig, trubbvinklig eller en rätvinklig triangel. Sedan skall trianglar klippas ut och vi ordnar dem efter storleken på den största vinkeln (först den mest trubbvinkliga triangeln, sedan andra trubbvinklig, sedan rätvinkliga etc.).

Efter det får barnen låna varandras pappersrester för att klippa ut andra trianglar och bygga ihop ett torn (som bara består av trianglar). Tillsammans tillverkar vi ”triangellandet”:

Triangellandet från geometriboken

Kanske lägger jag ihop Sergels Torg – mönstret under tiden. Eller så klipper jag ut svarta och vita trianglar och barnen får arrangera dem till ”Sergels Torg”.

Triangelolikheten

Nu skall trianglar byggas av pinnar. Men det är inte alltid det går! Får man tre pinnar med längder 2cm, 3cm respektive 6cm, så går de inte sätta ihop till en triangel. Anledningen är triangelolikheten.

Barnen får en massa pinnar och skall hitta tre stycken som de kan sätta ihop till en triangel (med häftmassa till exempel). De äldre barnen ska försöka förklara när det går att bygga en triangel och när det inte går.

Vägar

Apropå triangelolikheten kan vi prata om den kortaste vägen och det kortaste avståndet med 7- och 10-åringarna. Hur kan man t.ex. avgöra om ens handled eller fotled är smalare (t.ex. med snöre)? Med samma hjälpmedel kan man avgöra vilket har större omkrets: en cirkel eller en liksidig triangel, inskriven i cirkeln?
Vilken väg från dörren till fönstret är kortast (notera att bord kan vara i vägen för den raka sträckan)?

Också att fundera på: vilken av dödsrelikerna har störst omkrets?

Bygga med en magnetisk struktur

Vi avslutar med att pyssla med en magnetisk byggsats, där bitarna är magnetiska pinnar och kulor, som binds ihop väldigt starkt med varandra. Vilka former på trianglar går att bygga med hjälp av byggsatsen? Går det att bygga 3D-strukturer som består av trianglar och i så fall vilka? (T.ex. en tetraeder eller en ikosaeder går att bygga.) För de äldsta barnen berättar jag om de platonska kropparna som finns och vi försöker bygga dem alla.

Notera att jag antagligen inte hinner med allt ovanstående på alla lektioner. Ibland fastnar barnen på en sak, ibland blir uppgiften för svår. Men det mesta kommer ändå med på lektionerna.

Språkkunskaper

[kkratings]

På en gymnasieskola tillfrågade man alla elever om vilka språk de kunde. Det visade sig att fler än 90% kunde både engelska och tyska, samt att fler än 90% kunde både engelska och franska.

Visa att bland de elever som kan franska och tyska, kan fler än 90% också engelska.

english deutsch français

Källa: Tournament of Towns

Visa lösningen

© 2009-2024 Mattebloggen