Problemlösning intro

Den här vårterminen har jag äran att tillsammans med en annan lärare leda problemlösningskursen på Katedralskolan i Uppsala! Vi håller 2 timmarslektioner för intresserade elever på skolan, samt för nior som ska börja läsa där.

Tanken med träffarna är att träna eleverna inför kommande tävlingen SMT (SM i matte för gymnasister) och utveckla elevernas problemlösningsförmåga. Framförallt ska vi ha kul och upptäcka spännande ny matte tillsammans.

Nedan är första lektionen, som kan användas som introduktion till problemlösning för intresserade elever. Problemen 0 och 5 går man igenom på tavlan genom att tillsammans med eleverna få fram lösningen.

Problemlösning Katedralskolan, 2012-04-11

Startuppgifter

0. I en skål växer en bakteriekultur. Varje sekund delar sig alla bakterier i två nya. Efter en minut är skålen helt full med bakterier. Efter hur länge var skålen full till hälften?
(Ledtråd: tänk från slutet.)

1. En bit föll ur en gammal tidskrift. Första sidan hade numret 328 och sista hade ett nummer som bestod av samma siffror, men i en annan ordning. Hur många sidor föll ut ur tidskriften?

2. Du har tillgång till 24 kg spikar och en balansvåg med två skålar. Hur kan du mäta upp 9 kg spikar?

3. En snigel tar sig upp för en påle, den börjar från markens nivå. Varje dag kommer snigeln upp 5 cm, medan varje natt åker den ner 4 cm. När kommer snigeln upp till toppen, om pålen är 75 cm lång?

4. Ta bort 10 siffror från talet 1234512345123451234512345, så att talet som står kvar är så stort som möjligt.

Problemlösningstips 1: lös ett “förenklat” problem

5. I en 5×5-tabell står det ett plustecken i en hörnruta och i alla andra rutor står ett minustecken. En tillåten operation är att invertera alla tecken i en hel rad eller en hel kolonn. Går det att genom tillåtna operationer få alla tecken till att vara plus?
(Svar: nej. Ledtråd: titta på samma problem för en 2×2-tabell)

6. Det finns en träkub med sidan 3 cm. Det är ganska lätt att såga upp den i 27 små kuber med sidan 1 cm genom att såga sex gånger. Går samma sak att genomföra med färre sågningar om det är tillåtet att flytta bitarna emellanåt?

7. Visa att en konvex polygon med n hörn har vinkelsumman 180(n-2) grader.

8. Visa att n(n+1)(n+2) är delbart med 6 för alla heltal n.

9. Lös ekvationen (x2+x-3)2+2x2+2x-5 = 0

Logikövningar

10. I ett hav bor många olika bläckfiskar. Om en bläckfisk har jämnt antal armar så talar den alltid sanning, men om den har udda anta armar så ljuger den alltid. En gång sade den gröna bläckfisken till den mörkblåa:
– Jag har 8 armar. Och du har bara 6.
Då blev den mörkblåa sur:
– Det är jag som har 8 armar. Du har bara 7.
Den svarta bläckfisken höll med:
– Den mörkblåa har verkligen 8 armar. Men jag har hela 9!
Varpå den randiga bläckfisken sade:
– Det är ingen av er som har 8 armar! Bara jag har 8.
Vilka bläckfiskar hade exakt 8 armar?

11. I ett land finns endast tre städer: Sannholm, Löngeborg och Turmö. Sannholmsborna talar alltid sanning, Löngeborgarna ljuger alltid och de som bor i Turmö turas om strängt att tala sanningar och lönger.
En dag såg en jourhavande brandsoldat en rök och telefonen ringde. ”Vi har en brand! ” ”I vilken stad brinner det? ” ”I Turmö ”. Till vilken stad skall brandkåren?

4 reaktioner till “Problemlösning intro”

  1. Intressant! Hur många är det som deltar på lektionerna (eller kommer att delta)?

  2. Ja, jag hoppas att du kan följa den här ”kursen” parallellt, Toomas. Det var fem deltagare igår, men vi hoppas att det kanske kommer fler nästa gång.

Lämna ett svar

Denna webbplats använder Akismet för att minska skräppost. Lär dig hur din kommentardata bearbetas.

© 2009-2025 Mattebloggen