Transformationsmatrisen – del 4

Vi vill göra livet så enkelt som möjligt för oss. Så vi räknar ut transformationsmatrisen som på det andra sättet i Transformationsmatrisen – del 3.

Vi kollar först på ett lite större exempel. Låt oss räkna ut transformationsmatrisen mellan baserna A och B, båda i 5 dimensioner. Säg att vi av någon anledning vet vad vektorerna A_1, A_2, A_3, A_4 och A_5 har för koordinater i basen B:

A_1=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right)_B A_2=\left(\begin{array}{c}-1 \\-1 \\-1 \\-1 \\-1\end{array} \right)_B A_3=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)_B
A_4=\left(\begin{array}{c}1/2 \\1/2 \\0 \\0 \\0\end{array} \right)_B A_5=\left(\begin{array}{c}5 \\2 \\2 \\2 \\5\end{array} \right)_B

Och förstås vet vi dem i basen A:

A_1=\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)_A A_2=\left(\begin{array}{c}0 \\1 \\0 \\0 \\0\end{array} \right)_A A_3=\left(\begin{array}{c}0 \\0 \\1 \\0 \\0\end{array} \right)_A
A_4=\left(\begin{array}{c}0 \\0 \\0 \\1 \\0\end{array} \right)_A A_5=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)_A

Vi betecknar transformationsmatrisen från bas A till bas B med T så länge. Som vanligt får vi uppställningen:

T\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) T\left(\begin{array}{c}0 \\1 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}-1 \\-1 \\-1 \\-1 \\-1\end{array} \right) T\left(\begin{array}{c}0 \\0 \\1 \\0 \\0\end{array} \right)=\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)
T\left(\begin{array}{c}0 \\0 \\0 \\1 \\0\end{array} \right)=\left(\begin{array}{c}1/2 \\1/2 \\0 \\0 \\0\end{array} \right) T\left(\begin{array}{c}0 \\0 \\0 \\0 \\1\end{array} \right)=\left(\begin{array}{c}5 \\2 \\2 \\2 \\5\end{array} \right)

T är en 5×5-matris. Om vi tittar noga på första multiplikationen T\left(\begin{array}{c}1 \\0 \\0 \\0 \\0\end{array} \right)=\left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) ser vi att det är nödvändigt att matrisen har \left(\begin{array}{c}1 \\2 \\3 \\4 \\5\end{array} \right) som första kolonn.

På samma sätt följer de andra kolonnerna från de senare ekvationerna.

Alltså:
T=\left(\begin{array}{ccccc}1 & -1 & 0 & 1/2 & 5 \\2 & -1 & 0 & 1/2 & 2\\3 & -1 & 0 & 0 & 2\\4 & -1 & 0 & 0 & 2\\5 & -1 & 1 & 0 & 5\end{array} \right)

Eller, om vi kastar en blick tillbaka, så inser vi att de specifika siffrorna inte spelar någon större roll:
T=\left(\begin{array}{ccccc}[A_1]_B & [A_2]_B & [A_3]_B & [A_4]_B & [A_5]_B\\\end{array} \right)

med vilket menas att kolonnerna i matrisen är alla de vektorerna A_1, A_2, A_3, A_4 och A_5 uttryckta i basen B.

Och det är precis vad vi behöver i det generella fallet.

För att bestämma transformationsmatrisen från bas A till bas B, uttryck basvektorerna i basen B och skriv in resultaten som kolonner i en matris.

Riktigt så enkelt är det ju inte, den informationen som krävs har vi inte alltid från början. För att få veta hur man gör i ett jättegenerellt fall, kolla på nästa del.

© 2009-2024 Mattebloggen