Lösningen till problemet för de yngre vecka 47

Mattegåta

I ett visst spel används mynt som är värda 1, 15 och 50 Hello Kitty-dollar. En spelare köpte ett svärd och fick i växel ett mynt fler än vad han betalade. Vilket är det minsta antalet dollar som svärdet kunde kosta?

Diskussion

Vid en första anblick verkar det vara konstigt varför 50 dollar-myntet överhuvudtaget är viktig för uppgiften. Det verkar ju rimligt att försöka handskas med så få mynt som möjligt, det vill säga betala med 15 dollar och få två stycker 1 dollar-mynt tillbaka. Det skulle ge priset 13 dollar.

Men det är inte säkert att det är det absolut minsta priset! Tänk på hur det kan bli om spelaren betalar med två mynt och får tre mynt tillbaka. Till exempel kan han betala 1+50 dollar och få 15+15+15 tillbaka. Och då kostar ju svärdet 6 dollar, vilket redan är lägre!

Då kanske det går att få ner priset ännu mer? Nu får vi ta och resonera ordentlig om hur betalningen kunde sett ut. Till exempel verkar det onödigt om spelar betalar med några 15 dollar-mynt och får också några tillbaka, det skapar bara onödig växling. Alltså kan vi reducera till fallen då mynt av olika sort var betalt respektive växel.

Vad finns det då för varianter? Som i exemplet ovan så går det att betala med 1 och 50 dollar-mynt och få bara 15 dollar-mynt tillbaka. I lösningen nedan ser vi att det inte blir fler signifikanta fall än så.

Lösning 1

Vi kan räkna med att spelaren betalade med några sorter mynt och fick bara andra sorter tillbaka i växel.

-Han kunde betala med valutorna på 1 och 15 dollar, och få bara 50 dollar-mynt tillbaka, men då skulle han få tillbaka mer än vad han betalade (eftersom han fick ett fler mynt i växel).
-Han kunde betala med valutorna på 15 och 50 dollar, och få bara 1 dollar-mynt tillbaka, men då skulle svärdet kosta åtminstone 13 dollar.
-Signifikant fall I. Han kunde betala med valutorna på 1 och 50 dollar, och få bara 15 dollar-mynt tillbaka.
-Han kunde betala med 1 dollar-mynt, och få bara 15 och 50 dollar-mynt tillbaka, men då skulle han få tillbaka mycket mer än vad han betalade.
-Han kunde betala med 50 dollar-mynt, och få bara 1 och 15 dollar-mynt tillbaka, men då skulle svärdet kosta åtminstone 20 dollar.
-Signifikant fall II. Han kunde betala med 15 dollar-mynt, och få bara 1 och 50 dollar-mynt tillbaka.

Om det är signifikant fall I, antag att han betalade a stycken 1 dollar-mynt och b stycken 50 dollar-mynt. Då fick han a+b+1 stycken 15-dollar mynt tillbaka. Då kan vi uttrycka priset:

a*1+b*50-(a+b+1)*15=priset

a*1+b*50-a*15-b*15-15=priset

b*35-a*14=priset+15

Notera att vänsterledet är delbart med 7, så högerledet måste vara det också. Så det minsta talet högerledet kan vara är 21, alltså är minsta priset i det här fallet 6 Hello Kitty dollar!

Om det är det signifikanta fallet II får vi i princip samma ekvation om vi antar att spelaren fick tillbaka a stycken 1 dollat-mynt och b stycken 50 dollar-mynt (då betalade han a+b-1 stycken 15 dollar-mynt). Även där blir minsta svaret 6 dollar.

Så 6 Hello Kitty dollar är det minsta svärdet kunde kosta! Det kunde ske genom att spelaren betalade 50 dollar och 1 dollar och fick tillbaka tre mynt värda 15 dollar var.

Lösning 2

Lösning 1 ger en idé till en annan lösning. Idén handlar om att delbarhet med 7 är intressant. Talen 1, 15 och 50 ger alla nämligen rest 1 vid division med 7.

Så om vi kollar hur mycket det blir kvar när vi tar bort så mycket sjuor som möjligt både från betalningen och växeln, så blir resten alltid 1 större för växeln (eller om betalningen hade rest 6 vid division med 7 kommer växeln att inte ge någon rest alls).

Svärdet ska kompensera för den skillnaden. Eftersom svärdets pris ska adderas till växeln för att få betalningen, måste priset ge rest 6 vid division med 7. Det minsta sådana talet är 6.

Lämna ett svar

Denna webbplats använder Akismet för att minska skräppost. Lär dig hur din kommentardata bearbetas.

© 2009-2025 Mattebloggen