Introducera x tidigt i skolan?

Nyligen pratade jag med en kollega om ekvationer. Att så pass måna barn och ungdomar i Sverige har svårt att förstå hur ekvationer funkar.

En möjlig förklaring till detta är att det blir för stort hopp i abstrakt tänkande när ekvationer först introduceras. Många elever tycker inte om x eftersom de förknippar den nya symbolen med svår matematik.

Egentligen är ju ekvationer ganska enkelt! (Som all matematik, när man väl fattar.) Ett sätt att få elever att inte bli rädda för det nya skrivsättet är att introducera x tidigare i grunskolan, föreslog min kollega.

Ni har säkert sett något liknande i matteboken på lågstadiet:

 12 - 7 = \Box

Eller ett streck eller till och med en glad gubbe istället för rutan.

Varför inte skriva x istället? Det gör man redan tydligen i vissa länder, till exempel i Ungern (löst rykte, jag har ingen referens, någon som vet?)

Barnen får skriva en siffra på platsen där x är:

 12 - 7 = x

vilket antagligen gör de mindre rädda för variabler så småningom. (Naturligvis bör olika bokstäver användas, inte uteslutande x.)

Det är en intressant idé, men jag ser omedelbart en nackdel för elever som senare börjar läsa på gymnasienivå och träffar på ekvationer och formler av typen

f(x) = 2^x

där x inte står för någon speciell siffra. Men x står alltid för ett speciellt tal innan man börjar prata om funktionsbegreppet. Men förhoppningsvis är eleverna mogna nog på gymnasiet för att ta till sig den abstraktionsnivån.

En lektion för små barn om vinklar på klockan och delbarhet

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Notera att barnen redan har haft en introduktion till vinklar och olika vinkeltyper.

Klockan

Vinklar på klockan

Var hittar vi vinklar i rummet? Det är svårt att hitta spetsiga och trubbiga vinklar, men klockans visare bildar oftast en spetsig eller trubbig vinkel. Vi tar fram en modell av en klocka med två visare och snurrar ena visaren. Barnen säger under tiden vilken vinkel det är mellan visarna (”trubbig, trubbig, trubbig, trubbig, RÄT, spetsig, spetsig, spetsig, jättespetsig…”).

Vad är klockan om visarna bildar en rät vinkel (om minutvisaren är på tolv)? De yngre barnen får experimentera med en klockmodell, medan de äldre får föreställa själva. Hur ofta sammanfaller visarna, kan man fråga de äldre barnen.

Branta backar

Ställer man en spetsig vinkelns ena ben på marken blir det en backe. Vilken backe åker man snabbast nedför? Vilken backe är jobbigast att klättra upp på?

Vika papper

Tänk om vi har varken linjal, gradskiva eller sax med oss! Det enda vi har är ett papper. Hur kan vi få fram en rät vinkel? Vad ska vi göra om pappersbiten är rund och inte triangulär från början?

De äldre barnen får i uppgift att vika ihop vinklar på 180, 90, 45 samt 60 grader.

Färga klockans siffror

Vi ska göra den tråkiga klockan lite snygg och färglägga cirklarna med siffror. Går det att måla cirklarna i två färger, så att varannan cirkel har en färg? Kommer det att gå ihop på slutet? Går det med 3 färger? 4 färger? 5 färger?

Tio- och kanske sjuåringarna får hitta tal upp till 100 som går att färga i både 2,3,4,5 och 6-färgsmönster.
I samband med det får de kort där de snabbt ska gissa hur många cirklar det finns av en viss färg.

Till exempel, hur många röda cirklar är det på bilden? Svara utan att räkna dem en efter en!

Bygga ihop 360^\circ

Vi fortsätter på uppgiften från förra gången. Nu gäller det att inte bygga en cirkel utav vilka bitar som helst, utan av exakt två typer av bitar. Det finns inte så många lösningar till den här uppgiften om man lägger på begränsningar på att varannan bit ska ha samma färg (ett exempel är 90^\circ+30^\circ+90^\circ+30^\circ+90^\circ+30^\circ). De äldre barnen får försöka bevisa att de har hittat alla lösningar.

Centauren

[kkratings]

Två spelare spelar på ett oregelbundet rutigt bräde. De turas om att flytta pjäsen Centauren, som kan flyttas antingen en ruta åt vänster, en ruta uppåt eller en ruta uppåt-höger på ett drag.

Spelaren som inte kan flytta pjäsen på sitt drag förlorar spelet. Vem har en optimal strategi: första spelaren (som börjar) eller andra spelaren?

Visa lösningen

En lektion för små barn om vinklar

En ny termin är igång och för mig innebär det söndagsträffar med mina matematiksugna 5-, 6-, 7- och 10-åringar! Förra terminen skrev jag om våra 6 träffar, men vi har egentligen haft 11 stycken och i vår ska vi ha ungefär lika många!

Gamla träffar:
Träff 1 och 2
Träff 3 och 4
Träff 5 och 6

Den här våren tänkte jag prova att ha 1-2 övergripande teman på varje lektion, ungefär samma tema för stora som för små barn. Uppgifterna kommer dock variera för olika åldrar. De planerade aktiviteterna ska jag försöka lägga upp här på bloggen i förväg, så ni kan komma med synpunkter och förslag. De riktiga lektionerna blir aldrig i och för sig exakt som planerat, men i alla fall hälften av aktiviteterna hinns med (det gäller att ha aktiviteter med sig med marginal!).

Vinklar

Vi har nämnt vinklar och hörn lite grann förra terminen och svarat på frågor av typen:
– Hur många hörn har rummet? (Svaret var 6 för vårt rum)
– Hur många hörn har bordet? (Svar: 4)
– Bordet består egentligen av två mindre. Hur många hörn blir det om man förskjuter ena halvan? (Svar: 8, eftersom vinklar som är större än 180^\circ räknas också)

Här är en kortfattad plan på hur jag ska lägga upp lektionen för barnen (där det inte står något, utgå från att de är 5-7 år gamla):

Introduktion till matematiska begrepp

Jag berättar om spetsiga, räta och trubbiga vinklar, visar exempel och ber dem att hitta olika sorts vinklar i rummet. Finns det andra vinklar än räta i verkligheten? Ja, men man får leta efter dem lite längre (ett exempel är klockans visare).

Lek med vinkelexempel

Barnen får dra kort, ett i taget, och säga vad för sorts vinkel det är på bilden (trubbig, spetsig, rät). Man måste visa att man har rätt också och det kan man göra genom att lägga vinkel inuti en rät t.ex., för att visa att den är spetsig. Sådant kommer jag be om, när en vinkel är väldigt nära en rät, så det är svårt att avgöra vinkelns sort. Jag frågar efteråt om det finns vinklar som är lika stora och även då får barnen bevisa sina hypoteser genom att t.ex. lägga vinklarna på varandra.

Bara den färgade delen (själva vinklarna) ska lamineras för att uppgiften ska gå att genomföra som planerat.

Färga vinklar

För att associera även det inre med ordet ”vinkel” (se bilden nedan), ska vi måla lite (barn älskar att måla!) och samtidigt träna lite kombinatorik.

Hur många vinklar ser du på bilden? Måla alla möjliga vinklar i olika färger (det finns 6 stycken mindre än 180 grader och barnen får 6 uppsättningar av bilden):

Rita egna vinklar

Barnen ritar några egna vinklar. Vissa får i uppgift att rita spetsiga, vissa trubbiga och vissa räta.
Nästa uppgift är att rita två linjer som skär varandra och räkna antalet spetsiga samt trubbiga vinklar på bilden.

Bygga ihop 360^\circ

Jag har med ett pusselspel, som egentligen är menat till att lära sig bråk. Det är cirkelsektorer i plast i olika färger som är lika stora som 1/3 av cirkeln eller 1/8 till exempel. Sektorer av samma storlek har samma färg, till exempel är alla tredjedelar gula, alla åttondedelar – gröna.

Plastbitarna presenterar jag som vinklar. Barnens uppgift är att bygga ihop en cirkel utan ”vinklar” som inte alla har samma färg. Till exempel, \frac{1}{2}+\frac{1}{3}+\frac{1}{6}\ bildar en hel cirkel (\ 180^\circ+120^\circ+60^\circ=360^\circ\ ).

Dessa ”tårtbitar” återvänder vi till när vi ska prata om bråk.

De äldre barnen (10 år) får göra samma uppgift, men de måste mäta vinklarna med gradskiva och lägga ihop siffrorna, för att komma fram till att summan är 360 grader om vinklarna tillsammans bildar en cirkel.

Andra experiment för de äldre är att rita trianglar, riva bort hörnen och mäta vinkelsumman. Alternativt lägga hörnen bredvid varandra och se att det blir en rät linje (alltså 180 grader). Samma uppgift med fyrhörningar och femhörningar.

Rita en stjärna

Jag visar för de äldre barnen hur man kan rita exakta vinklar med hjälp av en gradskiva. Sedan får de lära sig att rita en femuddig regelbunden stjärna med passare, linjal och gradskiva.

Detta är allt för den första lektionen om vinklar! Notera att jag också hade tänkt med att hinna med ett annat tema, nämligen tal upp till 100 (och med de äldre barnen, delbarhet upp till 100).

HMT-final 2012 och föredraget om spel

Lördagen den 21 januari var en spännande dag för ca 45 högstadieelever. De tävlade nämligen i junior-sm i matte, det vill säga finalen i Högstadiets Matematiktävling!

Vinnaren blev precis som förra året Lisa Lokteva från Borås, denna gång på en odelad 1:a plats!

Lisa och Valentina
Jag och vinnaren av HMT 2012

Jag är extra stolt, eftersom Lisa har övat lite genom att lösa problemen på mattebloggen. Det har också Toomas Liiv gjort och han kom på delad 6:e plats i år! Grattis till de båda!

Jag var med och rättade problemet om cirklar och olika färger. Tyvärr såg bilden väldigt symmetrisk ut och några deltagare antog att delarna med samma färg hade samma area, men så var det inte nödvändigtvis (problemets text sade inget om saken). Men det var många som löste uppgiften rätt, det vill säga oberoende av de olika färgade områdens form och storlek.

Sedan var det dags för mig att hålla ett föredrag i aulan. Jag valde att prata om lösningstekniken ”att sno strategi” som fungerar i vissa sorts spel. Vissa problem hann jag inte prata om utförligt och du kan ladda ner föredraget och titta på det i lugn och ro.

Det handlar om att bevisa att man kan vinna eller spela oavgjort ett spel där man egentligen inte har någon aning om den optimala strategin. Precis som amatörkvinnan som kunde spela remi mot två förstaklassiga schackspelare (du kan börja kolla från 2:30):

Roliga mattegåtor?

Nu har alla adventsgåtorna fått lösningar, kolla upp dem under respektive inlägg.

Samtigit har jag lagt in en ny mätare på varje mattegåta (från december 2011), där ni kan bedöma hur rolig gåtan egentligen var. Jag skulle vara väldigt tacksam om ni gick på inläggen och satte era betyg!

Jag vill också tacka alla läsarna som kommit med lösningsförslag och idéer!

Här är alla adventsgåtorna:
Femkronors-spel
Tre brev
Rektangel
Bräde
Trigonometrisk rebus
Ädelstenar
Vattenmelon
Komma över till andra sidan
Test utan text
En heltalskub
Ett väldigt delbart tal
Ålder
Hundra
Triell
Kamelen och bananerna
Änglarna på granen
Schackpjäs
Tetris
Kronans massa
Polyedrar och polygoner
Sifferrebus
Triangellandet
Hungrig student
Mattekorsord 2011

Mattekorsord 2011

Jag behåller traditionen och presenterar ett sifferkorsord även i år. Denna är lite svårare än förra året, men också lite mindre. Utmana dina nära och kära eller lös korstalet tillsammans.

God Jul önskar mattebloggen!

Mattekorsord 2011

[kkratings]

Fyll i precis som ett vanligt korsord (fast nu endast med siffror). Obs! Inga tal börjar med noll.

Vågrätt:
1. Fibonaccital
3. Delbart med 11
6. Summan av talen från 1 till 1000
7. Närmaste heltalet till \pi\cdot 10000
9. Ett tal vars siffersumma delar sifferprodukten
10. En kub
11. Delbart med 9
13. Det sista talet som stryks när man utför Eratosthenes såll på tal upp till 100

Lodrätt:
1. En kvadrat
2. Det minsta femsiffriga talet med alla siffror olika
3. Fibonaccital
4. Ett tal med exakt 12 delare
5. En tvåpotens
8. Ett kvadrattal med siffrorna i stigande ordning
9. Summan av fyra på varandra följande primtal
10. Minsta talet med exakt 8 delare
12. En kub

Visa lösningen

Hungrig student

Hungrig student

[kkratings]

Pelle har en stekpanna som det får plats två hamburgare i samtidigt. Han vill steka varje hamburgare på varje sida i 2 minuter. Pelle är hungrig och vill steka tre hamburgare så fort som möjligt. Vilket är den kortaste tiden det kan ta?

Visa lösningen

Triangellandet

Triangellandet

[kkratings]

Triangellandet har formen av en liksidig triangel. En inre gräns delar landet i två stater, som har lika stor area. Beskriv hur gränsen ser ut (formen och positionen) om den har den minsta möjliga längden.

Visa lösningen

Sifferrebus

Sifferrebus

Vilka siffror passar istället för bokstäverna? (Varje bokstav är en unik siffra.)

Visa lösningen

© 2009-2024 Mattebloggen