Calkin Wilf-träd, del 1

Det är sällan som nya matematiska upptäckter handlar om någonting enkelt. All matematik som lärs ut i grundskolan upptäcktes för länge sedan av gamla greker, araber, kineser och indier. Gymnasiematematiken baserar sig på upptäckter som är minst 300 år gamla. Den nyaste forskningen är även för svår för universitetsmatten: algebrakurser har exempelvis varit ungefär likadana sedan 1920-talet.

Just därför är det så imponerande när nya enkla samband hittas. Calkin och Wilf publicerade en artikel om följande struktur så sent som 2000. Likt Pascals oändliga triangel, introducerar de ett oändligt träd, med nu är noderna bråktal.

Börja med att skriva 1/1 högst upp.
Sedan upprepa samma process om och om igen: om ett tal a/b är med i trädet, rita ut två grenar från det och skriv bråket a/(a+b) i den vänstra grenen och (a+b)/b i den högra. Till exempel, så kommer 1/1 att förgrenas i 1/2 samt 2/1.
1/2 kommer att förgrenas i 1/3 samt 3/2, och så vidare. Vi får följande struktur, som bär namnet Calkin Wilf-trädet:

Låt oss skriva ner bråken genom att läsa av en rad i trädet i taget. Vi får listan:

\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \frac{2}{3}, \frac{3}{1}, \frac{1}{4}, \frac{4}{3}, \frac{3}{5}, \frac{5}{2}, \frac{2}{5}, \frac{5}{3}, \frac{3}{4}, \frac{4}{1}, \frac{1}{5}, \frac{5}{4}, \frac{4}{7}, \frac{7}{3}, \frac{3}{8}, \frac{8}{5}, \frac{5}{7}, \frac{7}{2}, \frac{2}{7}, \frac{7}{5}, \frac{5}{8}, \frac{8}{3}, \frac{3}{7}, \frac{7}{4}, \frac{4}{5}, \frac{5}{1}, \ldots

Notera att varje bråks nämnare sammanfaller med nästa bråks täljare. Varför är det alltid så?

För två grannar i trädet är egenskapen inte alls konstig, eftersom båda talen sammanfaller med a+b. Men om två tal är bredvid varandra i trädet utan att vara omedelbara grannar, så är det ena någons högergranne, medan det andra någons vänstergranne. Notera att högergrannar alltid ärver nämnaren, medan vänstergrannar ärver täljaren. Om vi följer arvet upp i trädet från våra två tal, kommer vi till slut fram till två tal, som faktiskt är omedelbara grannar, och därför är det första talets nämnare lika med andra talet täljare.

I den allra sista situationen är två tal grannar i raden, men i trädet skedde en radbrytningen mellan det första och det andra talet. Men vi ser att alla tal i slutet av raderna har nämnare 1, medan alla i början av raderna har täljare 1, så egenskapen bevaras här också.

Bråkraden har även andra egenskaper. Kan du komma på några?

Calkin Wilf-träd, Del 2

Lösningen till problemet för de yngre vecka 41

Mattegåta

Ibland blir addition av bråk någonting snyggt!

Men vad är x lika med? Skriv också hur du kom fram till svaret.

Diskussion

I en gammal papyrusrulle från år 1600 f.Kr., Rhindpapyrusen, förekommer massvis med matematiska beräkningar. Bland annat innehåller den bråkräkningar som ovan med tal på formen \frac{2}{n}. Dessa beräkningar tog upp 9 sidor!

Räkningen ovan, men med x som konkret tal finns med på de sidorna. Men hur kan man lista ut vad x är utan att behöva plocka upp en gammal papyrus och kika?

Vi kan först fundera på hur bråkaddition sker med kända tal. För att addera tal med olika nämnare måste vi göra om bråken så att de har samma nämnare först. Och för att reda på minsta gemensamma nämnaren är det bra att faktorisera nämnarna (se lösningen nedan).

Lösning

Vi faktoriserar nämnarna i beräkningen för att inte behöva operera med så stora tal. Då ser vi att flera av talen innehåller faktorn 73.

\frac{2}{73}=\frac{1}{60}+\frac{1}{73\cdot 3}+\frac{1}{73\cdot 4}+\frac{1}{x}

Då kan vi multiplicera båda led med 73:

2=\frac{73}{60}+\frac{1}{3}+\frac{1}{4}+\frac{73}{x}

När vi ändå håller på kan vi multiplicera båda led med 60:

2\cdot 60=73+\frac{60}{3}+\frac{60}{4}+\frac{73\cdot 60}{x}

120=73+20+15+\frac{73\cdot 60}{x}

Vi förenklar allt förutom det hemska bråket:

120-73-20-15=\frac{73\cdot 60}{x}

12=\frac{73\cdot 60}{x}

Dags att multiplicera med x och dividera med 12:

12\cdot x=73\cdot 60

x=\frac{73\cdot 60}{12}

x=73\cdot\frac{60}{12}=73\cdot 5=365

Matteproblem för de yngre vecka 41

Mattegåta

Ibland blir addition av bråk någonting snyggt!

Men vad är x lika med? Skriv också hur du kom fram till svaret.

© 2009-2025 Mattebloggen