Lösning till problem vecka 14

Eli och Tiffany är kompisar och bor i grannhus. Eli bor på nummer 4. Om Tiffany ska ta den kortaste vägen till Eli, så spelar det ingen roll på vilken sida hon springer runt hennes eget hus. Bestäm numret som Tiffany bor på.

Lösning:

Om Tiffany springer till höger när hon kommer ut följer hon den röda vägen, om hon springer till vänster följer hon den blåa:

Den blåa vägen är 4 steg längre än den röda just nu, men de ska i slutändan bli lika långa.

Eftersom långsidan på Tiffanys hus är 8 steg totalt, måste 2 av dem  gå till den blåa vägen och 6 till den röda för att det ska jämna ut sig. Alltså bor Tiffany på nummer 6.

Liksidiga trianglar?

Rekommenderad från: 15 år

Mattebloggen har en inofficiell tävling i att lösa matematikproblem. Skicka in din lösning med motivering till valentina.chapovalova@gmail.com, så har du chansen att vara med på topplistan. Har du någon fråga om veckans problem, posta den i kommentarerna eller maila mig. Lycka till!

I en triangel ABC så är mitten av sidan AB markerad med punkten M. Även höjderna AH och BL är utritade. Det visade sig att triangeln MHL blev liksidig. Måste det vara så att även triangeln ABC är liksidig?

Om ja, ge ett bevis för varför den måste vara det. Om nej, visa hur ett motexempel konstrueras.

möjlig bild?

Visa lösningen

Fast på gräsmattan

Rekommenderad från: 14 år

Fredrik står i mitten av en rund gräsmatta, som har radien 100 meter. Varje steg Fredrik tar är 1 meter långt. Varje gång han ska ta ett nytt steg anger han riktningen som han ska gå i. Anna har då möjlighet att ändra Fredriks riktning mot den motsatta.

Kan Fredrik att komma på ett sätt att komma av gräsmattan oavsett vad Anna gör? Eller kan Anna alltid hindra honom?

Visa lösningen

En följd av fyrhörningar

Rekommenderad från: 15 år

Låt F1 vara en godtycklig konvex fyrhörning. För k>1, Fk konstrueras genom att man skär Fk-1 i två delar längs en av dess diagonaler, vänder på en av delarna och sedan klistrar delarna samman längs samma diagonal. Bestäm det största möjliga antalet icke-kongruenta fyrhörningar i följden {Fk}.

Exempel:

För att förtydliga, en tillåten operation är följande:

lv25_1

Visa lösningen

Klassiska bevis: Monges sats

Om du precis har börjat intressera dig för matematik, då säger jag grattis! Du kommer att bli fascinerad av problem, teorier och bevis många gånger!

Det är inte lika lätt om man fått matematiken serverad på ett guldfat sedan barnsben (eller tonårsben). Ju längre tid som går, desto mer måste man lära sig för att bli imponerad av något nytt tankesätt. Men som pris får man oftast upptäcka något ännu mer fascinerande än förra gången.

Ett av de här tillfälen var jag med om när jag för första gången besökte Uppsala. Det var någon gång vid årsskiftet 2001/2002 och jag gick i ettan på gymnasiet och kunde förstås inte så mycket om universitetsmatematik. Vilket i och för sig inte behövs för historien. Men snart får ni se hur allt ändå hänger ihop.

Vi fick sitta i ett klassrum och en matematiker berättade följade problem för oss.

Tre olika cirklar ligger i planet och de skär inte varandra (och ligger inte inuti varandra heller). För varje par av cirklar dra två linjer, som tangerar båda två cirklarna. Om cirklarna är olika stora, kommer dessa två linjer att skära varandra. Frågan är nu: kommer de tre erhållna skärningspunkterna att ligga på samma linje?

monge

Det visar sig att de måste. Försök att lösa problemet med den geometrin du kan. Det verkar vara svårt att visa, genom att bara rita linjer och bestämma vinklar i planet.

Däremot finns en elegant lösning, som använder sig utav en tredje dimension!

Varför och hur?

Det är en väldigt imponerande idé, att gå högre upp än vad som verkar behövas. Om problemet inte kan lösas, så skall man försöka att titta på det ur en annan synvinkel. Men oftast ligger svårigheten i att välja rätt synvinkel.

Just att gå upp i högre dimensioner visade sig vara nyttigt även i andra vetenskaper. Mycket förklarades av insikten om att jorden är sfärisk, extra dimensioner behövs för att strängteorin skall hålla. Även min forskning handlar om att förstå enklare strukturer genom att titta på de mer kompilcerade. Men hur hjälper den tredje dimensionen i vårt problem?

Föreställ er att det inte är cirklar, utan klot som ligger på ett plant papper, då ser det hela precis ut som på bilden om vi kollar uppifrån. Linjerna är fortfarande linjer, men i rymden kan vi faktiskt konstruera oändligt många linjer som är gemensamma tangenter till två av kloten. Alla dessa gemensamma tangenter bildar en kon, som har sin spets i papprets plan. Spetsen är då även skärningspunkten för de ursprungliga två linjerna.

Men om det finns tre kulor, så är det inte bara så att alla kan läggas på ett papper, vi kan lägga ett plant papper ovanpå dem också! Det pappret tangerar alla kloten, och det har lika mycket rätt att innehålla konspetsarna som det undre planet hade.

Således finns konspetsarna, det vill sägga de erhållna tre punkterna i båda planen. Och två plan skär varandra i en linje! Alltså ligger punkterna på en och samma linje.

Nu kan vi alltså glömma bort hela tredje dimensionen-grejen. Vi har visat att de tre punkterna ligger på samma linje i det tvådimensionella planet.

Här kan ni även titta på en film som illustrerar lösningen.

Tallskogen

Rekommenderad från: 12 år

På ett område 1km x 1km växer en tallskog. Alla tallarna har diametern 50 cm. Visa att en fältbiolog kan hitta en ledig rektangel 10m x 20m i skogen, för att kunna sola där med alla sina vänner om det finns a) 1200 b) 4200 c) 4500 d) 4600 träd i skogen.

SONY DSC

Visa lösningen

Kvartscirkel

Rekommenderad från: 15 år

Från början har vi en kvartscirkel med radie 1 cm. Gränserna för kvartscirkeln utgör diametrar för två mindre cirklar, deras halvor syns på bilden.
 

vecka91

 

 i) Hur förhåller sig areorna A och B?

 ii) Vad är areorna A och B lika med?

Visa lösningen