Första träffen med Matteklubben, åk 2-4

Minsta eleverna som går i Matteklubben är de i åk 2-4. Du kan också läsa om första lektionen i åk 5-6.

Även om eleverna var små, fyllde de salen så att det nästan blev lite trångt! Totalt var de 40 stycken och denna gång var vi 5 lärare (vi skulle ha varit ett par till, men de var sjuka). Första av allt presenterade vi oss, körde ut föräldrarna ur salen och delade ut fika. Sedan kunde lektionen börja (trots ljudnivån av 40 låg- och mellanstadiebarn).

Spel

Vi började lektionen med att spela ett matematiskt spel. Var och en fick ett papper som hen skrev ett tal mellan 1 och 100 på. Sedan avslöjade alla sitt tal. Det gäller att ha skrivit det minsta talet som ingen annan har skrivit. Det lättaste sättet att kolla, vem som vunnit är att ropa upp talen ett i taget:

– Vem skrev talet 1? (Flera händer räcks upp)
– Vem skrev talet 2? (Ett par händer räcks upp)
– Vem skrev talet 3? (Ingen)
– Vem skrev talet 4? o s v.

Vi körde i tre omgångar och talen 6, 13 och (jag tror) 8 vann de olika gångerna. Ett utmärkt spel att spela i alla åldrar när man är i ett stor gäng (åtminstone 25 personer).

Kalenderproblem

Dagens tema var ”kalender”. Jag uppmanade klassen att svara på följande frågor utan att räcka upp handen:
– Vilken veckodag är det idag?
– Vilken veckodag är det om 5 dagar?
– Vilken veckodag är det om 25 dagar?

På den sista frågan räknade barnen på två olika sätt: 7+7+7+4 (man måste gå 4 dagar framåt från dagens tisdag, vilket betyder att man hamnar på en lördag) eller 14+14-3 (man måste gå 3 dagar bakåt från dagens tisdag, vilket blir en lördag). De flesta av eleverna verkade förstå att om man går 7 dagar framåt så hamnar man på samma veckodag, vilket var den grundläggande idén för lektionen.

Sedan fick barnen jobba i grupper om 4-5 och lösa några uppgifter som handlade om kalendern. Under varje uppgift skriver jag ner ungefärliga dialoger jag har haft med de olika eleverna.

kalender

Utan att använda mobiltelefonen, lista ut svaren på följande frågor. Skriv direkt på pappret!

1. Vilken veckodag är det om exakt fem månader?

Elev: Är alla månader här 30 dagar?
Lärare: Nej, månaderna kan vara olika långa. Om exakt en månad är det den 23:e oktober och om en månad till är den 23:e november. Vilken månad är det om 5 månader?

Elev: Jag räknade att månaderna innehåll 28 dagar och ”extradagar”. Sedan räknade jag ihop extradagarna och gick så många veckodagar framåt.
Lärare: Rätt tänkt! Men du kanske glömde bort att januari har 31 dagar och inte 30 och det är därför det blev fel.

Elev: Jag räknade ut hur många dagar det blev: 30*3+31*2 = 152. Sedan tog jag bort 140 dagar (140/7=20 veckor). Och sedan är det 12-7 = 5 dagar framåt. Alltså är svaret en söndag.
Lärare: Rätt tänkt! Men det är tvärtom: 3 av månaderna har 31 dagar och 2 har 30 dagar.

Värt att notera är att vissa elever förstod att man inte behövde räkna 7 dagar i september för sig och de 23 dagarna i februari för sig (även om många gjorde det förstås). Man behöver bara hålla reda på hur många dagar det är vid månadsskiftet (t.ex. att från september till oktober kommer det gå 30 dagar) och i så fall räkna som i den sista dialogen.

2. Vilken veckodag är den 20:e september 2015?

Några kom fram till rätt svar, men för de flesta var det en för svår uppgift.

3. Vilket datum har tisdagen om 100 veckor?

Den här uppgiften var också svår, men eleverna kunde få följande hjälp:


Lärare: Hur många dagar har det gått när det har gått 100 veckor?
Elever: 700 dagar!
Lärare: Hur många år är det?
Elever: 1 år / 2 år
Lärare: Räcker de här dagarna verkligen till för 2 år? Hur många dagar är det på ett år?
Elever: 365
Lärare: Hur många dagar är det på två år?
Elever: 600-nånting / 700-nånting
Lärare: Vad blir 365+365
Elever: 700 dagar räcker inte till för 2 år!
Lärare: Nej, kolla hur många dagar man måste backa i så fall…

4. Matteklubben har träffar på tisdagar. (Tänk om man skulle kunna träffas varje tisdag!) Hur många tisdagar kan det som mest bli på ett år?


Elever: 52 (nästan alla svarade det första, vissa sade 51)
Lärare: Varför är det inte fler?
Elever: För att det är 52 veckor på ett år.
Lärare: Är ett år exakt 52 veckor? Hur många dagar skulle det vara.
Elever: Nej, det är inte exakt.
Lärare: Så varför skulle det inte kunna bli fler tisdagar på ett år?

5. Kan en och samma månad innehålla 5 måndagar och 5 torsdagar?

Ett par elever klarade den här uppgiften med följande resonemang:


Elev: Nej, det kan det inte. Det kan antingen bli 5 måndagar och 4 torsdagar eller 4 måndagar och 5 torsdagar. Om man har t.ex. 4 veckor så behövs det fyra dagar till för en till måndag och torsdag, men man har bara tre.
Lärare: Vad händer om månaden börjar på en torsdag?
Elev: Då räcker det inte heller till.

Alla som gjorde ett ärligt försök på uppgiften hade kommit fram till svaret ”Nej”.

6. Vilken veckodag är det idag om jag vet att när övermorgon kommer att bli igår, så kommer det idag var lika långt till en söndag, som från den dagen som var idag, när igår
var imorgon?


Elever: Räknas det som att idag är tisdag?
Lärare: Nej, här vet man inte vilket veckodag det är. Vi testar t.ex. att det är tisdag. Då kommer övermorgon (torsdag) bli igår på en fredag. Då är det 2 dagar kvar till söndagen. Och igår (måndag) var imorgon på en söndag, dvs 0 dagar till söndag. Det är olika antal dagar, alltså passar inte svaret ”tisdag”.

Elev: Räknar man till söndagen framåt eller bakåt?
Lärare: Den som är närmast.

Här fick två grupper med elever fel svar, men var säkra på att de hade gjort rätt, dels på grund av att en av lärarna godkände svaret (även lärare kan ha fel!). En grupp hade dock rätt svar!

 

Kalenderegenskaper

Mitt i lektionen gick vi igenom några fakta om kalendern. Många var inte säkra på hur många dagar alla månader innehöll, så det skrev vi upp (och några fick lära sig knogtricket). Vi diskuterade hur många dagar ett år har och att det kan bli skottår. När jag frågade eleverna när det senaste skottåret var, så sa vissa 2013 och vissa sade 2012. Efter ett tag tyckte de flesta att det var 2012.

Vi skrev upp några skottår i framtiden och noterade att det hände vart fjärde år. Sedan fick de veta att det inte är precis vart fjärde år som är skottår, utan vissa år, som är delbara med 100, är inte det. Jag förklarade även varför man gjorde så och det tyckte eleverna var ganska spännande.

På tavlan stod alltså åren 2100, 2200, 2300, 2500, 2600, 2700, o s v. överstrukna, eftersom de inte är skottår. Det är de år som är delbara med 100, men inte 400. Efter det gav jag eleverna en extrauppgift:

Extrauppgift

Hur många skottår är det mellan 2014 och 3000?

En del av eleverna räknade ut skillnaden och delade med 4, men vissa gjorde fel i divisionen, och vissa trodde att de var färdiga då. Men man ska akta sig för att inte få ett svar som är 1 mindre (vilket man får om man delar med 4 och avrundar neråt), samt att man måste ta bort de 7 förbjudna åren. En elev kom nära med sitt svar 232, men det är inte exakt rätt. Kan du lista ut svaret?

Utvärdering

Många elever var engagerade under lektionen, men många andra såg man var ganska vilsna. Uppgifterna var för svåra för dem eller så var de ointresserade av den typen av matte. Det kan vara för tidigt att börja med problemlösning redan i tvåan eller trean (och till med fyran), då man inte fått baskunskaperna på plats. Med andra ord, man har möjligen inte fått en känsla för matematik än och därför inte kan hantera abstraktionsnivån på materialet som presenteras på Matteklubben.

Det var också svårt för vissa barn att arbeta när ljudnivån var så hög och ventilationen inte så jättebra (40 barn och flera vuxna i en sal som är tänkt för färre!) Det var skönt att vissa barn kunde sätta sig utanför stora salen och arbeta. Förhoppningsvis har vi omkring 30 elever nästa lektion, så att det blir hanterbart för alla.

Ändå var det jätteroligt att många barn försökte och gjorde sitt bästa på uppgifterna. Man märker att det är intresset som skiljer barnen åt. Tycker man att det är intressant att sitta och klura, kommer man att göra det oavsett hur lite man kan. Såklart kan jag göra så att uppgifterna passar bättre barnens förkunskaper nästa gång, så att det inte blir en avgörande faktor för någon. Men nivån kommer inte att bli särskilt mycket lättare, då vi i Matteklubben har som syfte att utmana alla!

Första hemuppgiften från Matteklubben, åk 5-6

Här i kommentarerna kan du diskutera hemuppgiften. Skriv om du har frågor eller förslag på lösning/svar.

• Hur många olika armband kan man tillverka av 3 svarta och 2 vita pärlor? På bilden har du ett exempel.

armband_exempel

• Hur många svart-vita armband med 5 pärlor kan man tillverka överhuvudtaget?

• Hur ändras svaret om antalet pärlor får vara större?

Första träffen med Matteklubben, åk 5-6

Matteklubben är Uppsala kommuns satsning på begåvade elever i matematik. Jag har äran att förbereda aktiviteterna som vi håller på med och vara en av lärarna. Här på bloggen tänkte jag lägga ut materialet som vi tar upp på träffarna, samt skriva lite om hur lektionen har gått.

Träffen började med att eleverna tog fika och satte sig ner i ett stort klassrum. Nästan alla de ordinarie platserna blev upptagna (41 stycken). Vi var sju lärare och jag presenterade vad alla hette. Nästan direkt satte vi igång med de blandade uppgifterna. Det enda eleverna behövde var penna och kladdpapper, som de fick låna.

Eleverna fick dela upp sig i grupper om två-tre och i ungefär i 45 minuter försöka lösa fem uppgifter. När de hade löst en uppgift fick de räcka upp handen och berätta lösningen för en av lärarna. Läraren kunde då ställa följdfrågor, som att t.ex. be om att förklara svaret eller fråga om varför det är det enda möjliga svaret.

Under varje uppgift skriver jag några typiska dialoger jag hade med de små grupperna om just den uppgiften.

Blandade uppgifter

1. En pojke har lika många systrar som bröder, men hans syster har hälften så många systrar som bröder. Hur många pojkar och flickor finns det i familjen?


Elev: Hur kan man lösa den här uppgiften när det inte finns några siffror?
Lärare: Försök att pröva dig fram!

Elev: Vi fick att det var 4 pojkar och 3 flickor. Det uppfyller villkoren.
Lärare: Varför kan det inte finnas något annat svar?

2. I tre högar finns 22, 14 respektive 12 nötter. Du får göra tre förflyttningar. Ditt mål är att få högarna att innehålla lika många nötter.
Under en förflyttning får du flytta ett antal nötter från en hög till en annan, men antalet nötter man flyttar måste vara lika med antalet nötter i högen man flyttar till.
Vilka förflyttningar ska du göra?


Elever: Går det här verkligen att göra?
Lärare: Ja :D

Elev: Vi försöker med olika varianter men lyckas inte. (Förklarar hur de tänker.)
Lärare: Vad händer om du tänker baklänges? Vad skulle det sista draget kunna vara?

3. Skriv en siffra till vänster och en siffra till höger om 15 så att det nya talet blir delbart med 15 (det vill säga blir ett tal där divisionen med 15 går jämnt upp).


Elev: 0150, gills det?
Lärare: Försök att hitta på fler svar. (Alternativ: Nej, tal kan inte börja med 0.)

4. På den största ön i Sagolandet finns 4 kungadömen. Varje kungadöme gränsar till de tre andra. Rita karta över ön så som den kan se ut.


Elev: Till exempel så här (visar en cirkel uppdelad i fjärdedelar.)
Lärare: Vi räknar det inte som en gräns om de bara nuddar varandra på hörn, eftersom man inte kan gå över från ett land till ett annat. (Alternativt: Försök att hitta på fler svar.)

5. I en sjö har man placerat en väldig ovanlig vattenlilja. Varje dag så fördubblar liljan sin storlek.
Det visade sig att liljan tog upp precis hela sjön efter 20 dagar. Efter hur många dagar skulle sjön ha blivit full om man hade placerat ut 4 magiska vattenliljor från början?


Elev: Om det tog 20 dagar för 1 lilja, så borde det ta 20/4 = 5 dagar för 4 liljor.
Lärare: Låt oss undersöka om din logik fungerar i andra situationer. Om det hade tagit 4 dagar för en lilja att fylla sjön, så borde fyra liljor göra det på 1 dag, eller hur? (Undersöker lite och kommer fram till att det är 2 dagar i det fallet.)

lilja

 

Det fungerade väldigt bra att kommunicera med eleverna, vi var lagom många lärare (i snitt 5-6 elever per lärare) och ett par grupper hann precis klara av alla 5 uppgifterna när 45 minuter hade gått.

Därefter gick vi igenom varje uppgift på tavlan. En elev fick komma fram och förklara sin lösning och vi försökte alltid att diskutera alternativa lösningar. På uppgift nummer fyra fick alla gå fram och rita sina karta, vi fick väldigt många snygga exempel.

Därefter var det en liten-liten rast och vi skulle komma igång med temat, vilket var kombinatorik. Eleverna fick sitta i grupper om 4-6 och tänka och experimentera med hjälp av färgpennor. Denna gång försökte vi kommunicera med hela gruppen på en gång. Eleverna jobbade i grupp i ca 45 minuter, därefter var det 15 minuter gruppdiskussion.

os_ringar

Innan eleverna satte igång gick vi igenom färgerna som OS-ringarna har och att det har att göra med att alla länder i världen har någon av dessa färger i sin flagga. Därför skulle vi rita olika flaggor med de fem färgerna, men flaggorna behövde inte existera på riktigt.

Flaggor

1. Hur många olika flaggor av följande form kan man skapa om man har tillgång till fem färger?

svenska_flaggan

Här förtydliga vi på tavlan att alla de fyra rektanglarna måste ha samma färg. Det dök upp en intressant fråga om korset fick ha samma färg som bakgrunden. Då bestämde vi att man kunde lösa två olika problem, ett där de fick ha samma färg och ett där de inte fick.

Eleverna löste det här på flera olika sätt som genomgången visade (när vi tänker på varianten då de inte fick ha samma färg).

Om korset får vara en av de fem färgerna, så kan bakgrunden ha fyra varianter för färg. Det är likadant för alla fem färgerna på korset. Alltså är svaret 5*4 = 20.

Om man tar två färger, till exempel blå och svart, så kan man göra två flaggor: En med svart kors på blått bakgrund och en med blått kort på svart bakgrund. Det finns 10 olika par av färger (man skriver upp alla möjligheter och kollade att man inte missade något.) Alltså är svaret 10*2 = 20.

Om man får ha samma färg på korset som på bakgrunden, så är svaret 25 (= 5*5). Men man måste räkna bort de enfärgade flaggorna, som det finns precis 5 av, lika många som färger. Alltså är svaret 25 – 5 = 20.

2. Hur många olika flaggor av följande form kan man skapa om man har tillgång till fem färger?

tre_rander

Här dök det också upp frågor om olika varianter: var alla räderna tvungna att vara olika? Fick översta och nedersta vara samma? Fick alla ha samma färg? Vi bestämde oss för att lösa tre olika varianter.

Variant 1: Alla ränderna måste ha olika färger. Några grupper listade ut hur man skulle räkna ut det och tillsammans på tavlan kom vi fram till att svaret blir 5*4*3 = 60.

Variant 2: Översta och understa ränderna får ha samma färg. Någon enstaka grupp listade ut svaret här också. Vi kom fram till att man skulle lägga till något antal till svaret i Variant 1. Man kunde tänka att när understa och översta randen är likadana så är det precis samma situation som med svenska flaggan (mittersta randen är korset, resten är bakgrunden). (Det var en elev som kom på det). Alltså är det 20 varianter vi måste lägga till, så att svaret blir 60 + 20 = 80. En annan elev kom på att vi från början kunde räkna 5*4*4 = 80.

Variant 3: Ränderna får ha vilka färger som helst. Ett par grupper räknade ut att det var 5*5*5 = 125.
Tillsammans på tavlan kom vi fram till att vi behövde lägga till 20 + 20 + 5 till Variant 2 (flaggor där översta och mellersta randen är lika, flaggor där understa och mellersta är lika och flaggor där alla ränder är lika). 80 + 45 = 125 – ett annat sätt att få svaret! Men då tog tiden slut!

3. a) På hur många sätt kan ni i er grupp ställa er på en rad?
b) På hur många sätt kan ni bilda en ring?

Några av eleverna hann testa på den här uppgiften. En del kom fram till rätt svar på a)-uppgiften. Svaren var olika beroende på hur många de var (4,5 eller 6). Men många fick samma svar på b) som på a). Då kom jag med följande invändning:

Lärare: På hur många kan två personer ställa sig på en rad?
Eleverna: Två!

Lärare: På hur många sätt kan två personer ställa sig i en ring?
Eleverna: Ett! Hmmmm…
Lärare: Varför skulle det då vara samma svar för fyra/fem/sex personer?

Uppgiften hann vi tyvärr inte diskutera i helklass, så den tar vi upp nästa gång.

 

Allt som allt gick lektionen bra för att vara i en så enorm klass. Eleverna blev trötta mot slutet, så nästa gång kommer vi ta en lite längre rast. Det vore också kul om eleverna interagerade mer mellan olika skolor och då kan det vara bra med slumpvis fördelade grupper, som vi kör en mattetävling emellan.

Jag ser fram emot att träffa alla eleverna om fyra veckor! Det är väldigt kul att hålla på med matte med elever som har väldigt god förståelseförmåga. Elever som är inte rädda för att försöka och därför lyckas väldigt bra med att lösa problem som jag är säker på att inte så många vuxna skulle klara.

Programmering på papper

Fler och fler människor lär sig att programmera, vilket är bra, för fler och fler bra programmerare behövs. Än så länge finns ingen obligatorisk programmering i grundskolan i Sverige, men vem vet, det kanske är på gång?

Jag har undervisat inte bara i matte, utan även i algoritmik, det vill säga ”programmeringstänk”. Istället för att direkt lära sig ett programmeringsspråk kan man lära sig hur man överhuvudtaget formulerar sig och tänker när man skriver program. Några lärare blev intresserade av att testa mitt material på sina elever (ungefär åk 4-7), vilket inspirerade mig till att starta kursen “Programmering på papper”.

Jag kommer att skapa färdiga lektionsplaneringar som du gärna får testa på dig själv, dina barn eller dina elever. Alla synpunkter och erfarenheter vill jag gärna höra här eller på mail: valentina.chapovalova@gmail.com

Kursen kommer innehålla ungefär följande:

– Instruktioner och felaktiga anrop
– Skapa egna instruktioner utifrån givna (funktioner)
– Upprepning (for-loopar)
– Om-så-annars (if-then-else)
– Så länge som (while)
– Logiska utsagor (och/eller)
– Lite om komplexitet
– Lite om rekursion
– Lite om parallellprogrammering

– Mycket problemlösning!

Uppskattningsvis kommer det vara 20 lektioner och jag kommer producera circa en lektion i veckan. Första lektionen är tillgänglig för alla här:

Lektion 1. Programmering på papper för elever

Lektion 1, Programmering på papper för lärare

Om du tycker det här verkar skoj och vill hjälpa mig att skapa så bra undervisningsmaterial som möjligt, testa då gärna lektionen och maila mig din feedback. Då ser jag till att du får alla lektionerna framöver också.

Prog

Satsning på begåvade elever i Uppsala

En avhandling startade det hela. Det handlade om situationen för barnen, som har det lätt i skolan. I matematik! Ja, just det, lätt i matematik, inte dem vi brukar betrakta som barn med problem i skolan (och inte heller dem man brukar forska på). Men det är just det de har, problem med skolan. Alla barn som inte får undervisningen anpassad till sin nivå är på ett eller annat sätt missnöjda med skolan. Anpassningen sker inte för att lärarna ofta inte hinner eller vet hur man gör. En möjlig lösning är att ge eleven en bok från en högre årskurs att räkna i. Men eleven behöver en helt ny typ av matte och handledning, det som inte kommer finnas med i en högre mattebok om det inte funnits med hittills. Så problemet med den mattebegåvade eleven kvarstår.

Det finns dock några utmärkta lärare som hinner ge sådana barn utmaningar de förtjänar. Kanske letar de upp material på nätet, kanske i Nämnaren eller någon intressant mattebok. Och det skulle kunna räcka … men! De här barnen har potential att bli några riktigt bra forskare, ingenjörer, programmerare eller allmänt kreativa tänkare och problemlösare i framtiden. Och att lära sig problemlösning är riktigt svårt och kräver tid och tålamod från både lärarens och elevens sida. Ett sätt att spara tid och dessutom göra det många gånger roligare är att träffas i grupp! Vi har redan fotbollsklubbar, simklubbar, teaterföreningar … Varför inte ha Matteklubbar?

Äntligen ställer sig politikerna bakom idén att satsa på begåvade elever (då vi inser att inte bara de sämsta utan även de bästa resultaten i PISA har sjunkit). I höst är Uppsala med i den här provsatsningen och jag är glad över att få vara en av lärarna! Vi ska tillsammans driva Matteklubben, träffar för matteintresserade elever i åk 2-9. Vi har fått lov att ha fyra träffar i höst på Ångströmslaboratoriet. (Obs! Det går inte att anmäla sig längre. Förhoppningsvis kan du vara med nästa termin. Under tiden följ oss på Matteklubbens sida.)

Men innan du anmäler dig, tänk på om det verkligen är något för dig eller ditt barn. För att se vad vid ungefär kommer att hålla på med, är du välkommen att träffa oss torsdagen den 11:e september klockan 18.00 i aulan och mässen på Polacksbacken (hus 6). Förutom en föreläsning kommer det finns prova på-stationer med aktiviteter för alla årskurser! Välkomna!

Vi i Uppsalatidningen
Vi i Uppsalatidningen!

Att räkna utan tal och bokstäver

När någon ställer frågan “Vad är matematik för dig?” svarar jag ibland “Att tänka.” Det kan tolkas som ett luddigt svar eller att jag kanske tror att matematik är viktigare än allt annat. Men så är inte riktigt fallet och jag ska försöka visa vad jag menar med hjälp av ett exempel.

Problem

Framför dig är en rektangel. Du sätter ut två punkter inuti rektangeln och förbinder alla de med alla hörnen, till exempel så som bilden visar. Vilken area är störst: den svarta eller den grå?

flackar1

Försök att tänka ut svaret utan att använda dig av några som helst variabler eller uträkningar. Svårt, eller hur?

Låt mig presentera ett tankesätt som gör den här uppgiften väldigt lätt istället.

Fläckar

Föreställ dig ett vitt A4-papper och ett litet barn som målar med blått och gult akvarellfärg. Hon målar abstrakt konst, det vill säga det gula blir någon slags oregelbunden fläck, det blå likaså. Barnet målar inte så noggrant, på vissa ställen täcker fläckarna över varandra och på så sätt bildas det gröna områden.

flackar2
När bilden blev färdig visade det sig att den sammanlagda arean av de två fläckarna är lika stor som arean av hela pappret. Visa att den gröna arean är lika stor som den vita arean.

Beviset får vi genom att ställa den enkla frågan: “Hur mycket area behövs för att komplettera den blå, den gula arean och den gröna arean till arean av hela pappret?” Visuellt behövs bara den vita arean, för att det är den som är kvar. Men om vi tänker på att fläckarna tillsammans skulle utgöra arean av hela pappret så ser vi att det saknas en till grön area för det. Det gula och det gröna är nämligen en hel fläck, men det blåa saknar just det gröna för att bli en hel fläck (eller tvärtom). Eftersom det saknas precis lika mycket när vi tänker på två olika sätt så måste den gröna arean och den vita arean vara lika stora.

Vi löste uppgiften utan att använda oss av X eller någon annan variabel. Egentligen resonerade vi precis som men gör med ekvationer, men med ord istället. Ibland kan det vara lättare, ibland svårare, men här är det mer intuitivt tycker jag, speciellt om man ska förklara lösningen för någon annan!

Tänka geometri

Vad har uppgiften med abstrakta fläckar med riktig geometri att göra? Låt oss bevisa att den svarta och den grå arean är lika i följande figur:

flackar3

Vi kan även tänka att regelbundna former utgör fläckar. I följande figur kan vi göra om färgerna till gult, blått, grönt och vitt. Ser du de två fläckarna? Och att det gröna är precis skärningen de emellan och det vita är precis den delen de inte täcker?

flackar4

För att visa att den gröna arean är lika stor som den vita behöver vi bara förklara varför trianglarna tillsammans utgör arean av hela rektangeln. Varje sådan triangelarea utgör hälften av rektangelns area (för detta kan vi t.ex. använda areaformlerna, för rektangeln är det basen gånger höjden, men för triangeln är det precis hälften av det). Alltså utgör summan av areorna på trianglar exakt hela rektangelns area. Klart!

Kan du identifiera fläckarna i den ursprungliga uppgiften och lösa den utan att räkna alls? Kom ihåg att fläckarna kan ha godtycklig form och behöver inte ens vara sammanhängande!

Uppgifter utan räkning

Detta är vad jag menar med att “tänka matte” istället för att “räkna matte”, vilket är det uttrycket de flesta använder (eftersom de oftast gör just det senare, men inte det första).

Siffror och variabler är bra att införa när de behövs, men det finns fördelar med att försöka klara sig utan dem. Det kan vara tillräckligt för att lösa ganska komplicerade problem, som till exempel uppgiften i början. När vi presenterar idéer, uppgifter och lösningar av den typen för barn blir de oftast inte rädda, då det bara finns ord och bilder. Barn har inte fördomar mot resonemang med ord, till skillnad mot variabelräkning. Där har fördomarna oftast utvecklas efter att barnet tvingats jobba på ett visst sätt med ekvationer (dock kan de tyvärr ha fördomar mot geometri också). Så passa på och sätt dina elever (och dig själv) i situationer, där du inte har någon aning om hur man löser problemet. Du får då vara kreativ och kommer förmodligen att komma på ett lättare sätt att hantera uppgiften än vad någon annan skulle ha berättat för dig.

Perfekta tal och deras binära motsvarigheter

Nyligen fyllde jag 28 år vilket är en “perfekt” ålder på flera sätt :)

Nämligen är 28 det andra perfekta talet, matematiskt sett. Det vill säga, 28 är lika med summan av alla dess delare, exklusive talet självt:

28 = 1 + 2 + 4 + 7 + 14

Det första perfekta talet är 6, det tredje, 496, kommer jag nog inte att fylla…

På antiken kände man till bara fyra perfekta tal, i nuläget har man hittat totalt 48 (senaste talet hittades 2013). Man vet inte om perfekta tal någonsin tar slut. Man vet inte heller om det finns några udda perfekta tal, för alla man hittat hittills är jämna.

Det lustiga är att man inte hittat mönstret med vilket de perfekta tal förekommer. Men om man skriver perfekta tal i det binära talsystemet så ser det väldigt regelbundet ut:

Perfekt tal i bas 10 I bas 2
6 110
28 11100
496 111110000
8128 1111111000000
33550336 1111111111111000000000000
8589869056 111111111111111110000000000000000
137438691328 1111111111111111111000000000000000000
2305843008139952128 1111111111111111111111111111111000000000000000000000000000000

Det här verkar rätt kusligt. Varför beter sig perfekta tal binär regelbundet på det här sättet? Alltid med ett primt antal ettor och precis en mindre nolla efter!

Jag tyckte det här var lite alienaktigt och gick in på Wikipedia för att läsa på om perfekta tal. Svaret låg i resultaten om vilka perfekta tal vi hittat fram tills nu.

För det första har vi ju inte hittat några udda perfekta tal. För det andra har redan Euklides visat att om 2^{n}-1 är ett primtal (kallas för Mersenneprimtal), så är 2^{n-1}(2^{n}-1) ett perfekt tal.

Det betyder att så fort ett nytt Mersenneprimtal beräknas, så får vi ett perfekt tal på köpet. Det finns faktiskt exakt 48 hittills kända Mersenneprimtal, precis samma antal som perfekta tal. Detta visar sig inte vara någon slump. Euler visade att alla jämna perfekta tal faktiskt har den här formen, det vill säga motsvarar ett Mersenneprimtal.

Till exempel, 3 är det första Mersenneprimtalet (2^2-1) som motsvarar det första perfekta talet 2^1(2^2-1) = 2\cdot3 = 6.

Nu är det inte så svårt att bevisa det binära sambandet. 2^{n-1} skrivet binärt blir 100...00 med n-1 stycken nollor. 2^{n}-1 binärt blir 111...11 med n ettor.
Multiplicerat med varandra blir det såklart 111...1100...00 med n ettor och n-1 nollor. Dessutom är n ett primtal, annars skulle inte talet 2^{n}-1 vara ett primtal!

Förklaringen på mönstret är klar, men det intressanta är egentligen Euklides och Eulers bevis, som båda lämnas åt läsaren :)

Första matteregattan i Uppsala

Den 1 mars hölls Uppsalas första Matteregatta för högstadiet! Två skolor deltog: Gluntens Montessoriskola samt Uppsala Musikklasser, både respresenterade med ett lag. Stort tack till Katedralskolans mattecirkel som hjälpte till att organisera tävlingen och utgjorde juryn.

Laget UMK (Uppsala Musikklasser) kom ut som segrare med 73 poäng av 78 möjliga! Tvåan Gluntens Montessoriskola presterade också mycket bra med 70 poäng. Kanske var uppgifterna något för lätta för dessa nior, men vad tycker du? Pröva att lösa uppifter nedan själv :)

Vinnarna Johan Tengholm, Johannes Aronsson, Kristoffer Ley, Karin Pontoppidan och Gustav Linnarsson
Vinnarna Karin, Johannes, Johan, Kristoffer och Gustav

Omgång 1 (14 minuter, 5 poäng per uppgift)

1-1. I en 5 × 5-tabell, kryssa i några rutor så att det finns exakt två kryss på varje rad och varje kolumn.

1-2. I följande uträkning har man ersatt siffror med bokstäver, på så sätt att olika bokstäver står för olika siffror medan samma bokstäver står för samma siffror.

DA + D = AMM

Hur såg uträkningen ut från början?

1-3. Lös ekvationen ((x/3 − 8) · 2 − 6)/2 − 3 = 7

Omgång 2 (14 minuter, 6 poäng per uppgift)

2-1. Dagens datum är 2014.03.01. Summerar man alla siffrorna i datumet, så blir det 11.
(2 + 0 + 1 + 4 + 0 + 3 + 0 + 1 = 11)
Vilket är det närmaste datumet i framtiden som har siffersumman 10? Motivera varför inget tidigare datum
fungerar som svar.

2-2. En pojke har lika många systrar som bröder, men hans syster har hälften så många systrar som bröder. Hur många pojkar och flickor finns det i den familjen?

2-3. En träkub har sidlängden 1 m. Vi sågar upp kuben i små kuber som alla har sidlängden 1 cm och lägger alla småkuberna på en rad. Hur lång blir raden?

Omgång 3 (17 minuter, 7 poäng per uppgift)

3-1. Klipp upp ett 6×4-rutnät i fem stycken rektanglar med olika areor. Du får bara klippa längs med rutgränserna. Visa uppdelningen genom att rita en bild.

3-2. Erik bestämde sig för att endast spela datorspel på onsdagar, lördagar och udda datum. Hur många dagar i rad som mest kan han njuta av datorspel? Motivera varför det antalet dagar är det största möjliga.

3-3. Bob blandar saft genom att späda ut saftkoncentrat med vatten så att det bildas exakt 2 liter saft. Bob tog 5 delar vatten till 1 del koncentrat. Sedan drack Bob ett glas (2 dl) av saften och märkte att det inte smakade något vidare. Han upptäckte att han hade läst fel och att han borde ha blandat 2 delar vatten med 1 del koncentrat. Hur mycket saftkoncentrat borde Bob hälla in i kannan för att få perfekt smak på saften?

Omgång 4 (17 minuter, 8 poäng per uppgift)

4-1. Sätt ut siffrorna 1,1,2,2,3,3,4,4 i en sådan ordning att det finns exakt en siffra mellan 1:orna, två siffror mellan 2:orna, tre siffror mellan 3:orna och fyra siffror mellan 4:orna.

4-2. Man gjorde följande förändringar med en rektangel: först ökade längden med 50%, sedan minskade bredden med 40%, sedan minskade längden med 40% och till sist ökade bredden med 50%. Har rektangelns area blivit lika stor som i början, mindre eller större, och hur stor var den procentuella förändringen om den inte förblev lika stor?

4-3. Anna och Chris springer runt en löpbana. De startar från samma ställe samtidigt och håller sina hastigheter. Chris springer mycket snabbare och kommer om Anna för första gången då hon är på sitt första varv och har 1/4 av banan kvar. De bestämmer sig för att sluta när Anna har sprungit 6 varv. Hur många varv har Chris hunnit springa?

Problemförfattarna: Valentina Chapovalova (jag) och Johan Sundström (elev på Katedralskolan Uppsala).

Vill du veta de rätta svaren och förklaringarna?
Ladda ner lösningarna och titta på rättningskriterierna för att avgöra hur mycket poäng du skulle ha fått på egen hand!

HMT-kval 2013

För circa en månad sedan hölls kvalomgången i Högstadiets Matematiktävling. Det är en tävling i problemlösning som riktar sig till årskurs 6-9, men självfallet lyckas eleverna i årskurs 8-9 få bäst resultat. Därför är det mest elever från dessa årskurser som går vidare till finalomgången.

Därmed inte sagt att de inte kan gå bra för elever i åk 6-7! Det de eventuellt saknar är några kunskaper om geometri samt delbarhet, vilket ett par av årets kvaluppgifter gick ut på. Däremot kunde man klara sig riktigt bra även om man “bara” hade löst fyra uppgifter av sex. 10 poäng räckte nämligen för att gå till final (3 poäng tilldelas för varje korrekt löst uppgift). Du kan läsa mer om årets omgång på HMT:s hemsida, medan vi tittar närmare på själva uppgifterna.

Problem 1

Det går att skriva tal i rutorna i figur 1 så att om man följer pilen från en ruta och
använder räkneoperationen som står vid pilen så får man talet i nästa ruta.

hmt_kval13_1

Vilket tal är då X? Ange även en möjlig räkneoperation att ersätta frågetecknet med.

Lösning

Strategin är att gå baklänges från 13 till X på vägen gjord av pilarna till vänster. Till 13 kommer vi genom att dela med 2, så talet innan måste vara 26. Till 26 kommer vi genom att subtrahera 1, så talet innan är 27. Innan dess multiplicerade vi talet med 3, så talet innan måste ha varit 9. Och från X kom vi till 9 genom att subtrahera 11, så X måste ha varit 20.

På samma sätt kan vi bestämma talen på högra pilvägen. Till 13 måste vi ha kommit från 18, till 18 från 12, till 12 från 6. Om vi ska komma från 20 till 6 så kan operationen under frågetecknet vara -14 till exempel.

Kommetarer

Det här en typiskt uppgift nästan alla tävlande klarar av. Man hoppas ju innerligt att ALLA elever i åk 9 ska kunna klara av en sådan uppgift. Men så är tyvärr inte fallet, vilket bara beror på att dessa elever antagligen skulle missförstå uppgiften.

En grej man inte tänker på när man är van vid ekvationer är att “x2” och “x3” skulle kunna misstolkas att handla om “X”. Bokstaven “X” står i mitten för att göra uppgiftsformuleringen tydligare, men kan tvärtom skrämma elever som inte gillar ekvationer. Man skulle kunna ställa upp lösningen på första halvan av uppgiften såhär:

((X – 11)*3 – 1)/2 = 13

Men hur kul formulering är det? Vilken av formuleringarna uppmanar till någorlunda kreativt tänkande och vilken till att “komma ihåg och tillämpa inlärd metod”? Just det, olika formuleringar på samma uppgift blir pedagogiskt sett helt olika uppgifter! De flesta elever tror jag skulle lyckas lättare på den första formuleringen. Något att tänka på när man introducerar ekvationer i skolan.

Problem 2

Om talet A vet vi följande:
- Talet A ger resten 5 när det delas med 11.
- Talet A ger resten 4 när det delas med 9.
- Talet A ger resten 5 när det delas med 7.
- Talet A ger resten 4 när det delas med 5.
Vilken rest får man när man delar A med 3?

Lösning

Svaret kan vara antingen 0, 1 eller 2, eftersom inga andra rester förekommer när man dividerar med 3. Talet A kan vara hur stort som helst, men vi försöker “få plats” med så många 3:or i talet som det bara går.

För det kan vi använda att talet A har rest 4 när det delas med 9. Det betyder att man får plats med ett antal 9:or och det blir 4 över. Men en 9:a är ju tre 3:or, därför vet vi att talet A innehåller ett ännu större antal 3:or, men det viktigaste är att det blir 4 över. Där får det plats en 3:a till och det blir 1 över. Därför är resten lika med 1.

Kommetarer

Svårigheterna med att lösa den här uppgiften består av att man inte vet vad division med rest innebär, eftersom man inte fokuserar så mycket på just rester i skolan. Och även om man vet vad resten är, så kanske man försöker bestämma talet A, vilket inte ger ett heltäckande resultat (det finns flera tal A som har de nämnda egenskaper, till och med oändligt många sådana tal finns det). Och så är det förstås vilseledande att det bara villkor två som är viktigt.

Tar man sig igenom de hindren, så är inte uppgiften svår.

Problem 3

På Skänkvägen står elva hus på rad, numrerade från 1 till 11. Eftersom sämjan bland
grannarna är god, så bjuds det ofta på middag. När man bjuder på middag bjuder man
in de två närmaste grannhusen på båda sidor. Om man inte har två grannar på någon
sida bjuder man alltså in färre grannar, till exempel bjuder hus 2 in grannarna i hus 1, 3
och 4.

En dag ärver familjen i hus 2 en riktigt, riktigt ful tavla. När familjen nästa gång blir
bjuden på middag bestämmer man sig därför att ge bort tavlan till kvällens värd. Men
tavlan är så ful att ingen på gatan vill behålla den, så vid första möjlighet ger man därför
bort den till den middagens värd. Av artighetsskäl kan man såklart inte ge tillbaka tavlan
till någon man själv fått den av, och inte heller till någon man själv redan en gång givit
bort den till.

Vem kommer till slut att vara tvungen att behålla tavlan?

Lösning

Vi hoppar vilt i svårighetsnivån! Vi “finkammar” uppgiften lite först, för att senare lättare kunna formulera lösningen.

Man kan bara ge bort/ta emot tavlan av hus som ligger 1 eller 2 steg bort ifrån ens eget. Om hus A gav bort tavlan till hus B så är den förbindelsen A-B “förbrukad” eftersom tavlan inte får ges på samma sätt och inte heller ges tillbaka från hus B till hus A. Således kan vi rita ut alla förbindelser och tänka oss att tavlan vandrar längs med dem och “förbrukar” dem (husen ligger på rad, men att vi ritar dem på en cirkel spelar ingen roll, det är förbindelseschemat som är det viktiga):

tavlan

Låt oss för en stund strunta i var tavlan börjar sin väg (hus 2). Vi tänker istället på var tavlan kan sluta (någon annanstans i hus 2?). Kanske slutar tavlan i hus 4, så vi tittar på förbindelser som har med hus 4 att göra:

tavlan_hus

Om hus 4 är huset som inte kan skicka tavlan vidare, så betyder det att tavlan kom till dem och i och med det var alla förbindelser förbrukade. Hur förbrukades förbindelserna? Varje gång hus 4 fick tavlan så förbrukades nästa förbindelse genom att de gav bort den, och tvärtom. Så eftersom tavlan inte började där, måste förbindelserna förbrukats i ordningen: fick – gav bort – fick – gav bort. Därför kunde inte hus 4 fått tavlan på sin sista förbindelse.

Husen 3, 5, 6, 7, 8, och 9 befinner sig i samma situation. De har fyra förbindelser var och därför följer samma schema, om nu alla fyra förbindelserna skulle förbrukas: fick – gav bort – fick – gav bort.

Samma sak är det egentligen för husen 1 och 11 som har två förbindelser var. Får de tavlan, så har de ju möjlighet att ge bort den.

Därmed är det bara hus 2 och 10 kvar. Hus 2 har tavlan från början och därför följer schemat “gav bort – fick – gav bort”, OM vi är säkra på att alla förbindelser förbrukas. Därför är hus 10 det enda huset som kan ha kvar tavlan utan att kunna ge bort den.

En möjlig väg för tavlan kan vara 2 -> 4 -> 6 -> 8 -> 10 -> 11 -> 9 -> 10. Nu kan hus 10 inte ge bort tavlan.

Kommetarer

Läsaren som är bekant med grafteori förstår att så fort vi har “kammat” problemet så handlar det om i princip Eulerstigar. Men enkel formulering kan man säga att en figur, som man ritar utan att lyfta pennan från pappret, har som mest två punkter, varifrån det utgår ett udda antal linjer. En av punkterna kommer då vara startpunkten och den andra slutpunkten.

Problem 4

I parallelltrapetset ABCD är sidan AB 50% längre än sidan CD. Punkten P
är diagonalernas skärningspunkt. Arean av triangeln ADP är 12. Bestäm arean av hela
parallelltrapetset.

parallelltrapets

Lösning

Parallelltraps är en figur med två parallella sidor (det syns på bilden att det är AB och CD som är parallella). Om man ritar ut diagonalerna bildas det flera alternatvinklar, varav två par är inbördes lika. Det följer då att trianglarna APB och CPD är likformiga.

alternatvinklar

Vi färgkodar de fyra små trianglarna som syns på bilden:

parallelltrapets_slutsatser

Vi kom fram till att brun och röd var likformiga. De är dessutom likformiga med koefficienten 1,5 (eftersom röds motsvarande sida var 50% länge än bruns).

Vi vet även att blå+brun har samma area som grön+brun, eftersom båda dessa stora trianglar har samma bas DC och lika lång höjd (avståndet mellan de parallella linjerna). Därför har blå och grön samma area och vi vet från uppgiften att det är 12.

Blå och röd har samma höjd om vi tar DP pch PB som baser. Med DP och PB är motsvarande sidor hos den bruna och den röda triangeln. PB är alltså 1,5 gång större och då han även röd 1,5 gånger större area än blå, 12*1,5 = 18.

Blå och brun delar höjd om man nu väljer AP och PC som baser. Även här är PC 1,5 gånger mindre än AP. Så arean för brun är även den 1,5 mindre än arean för blå, det vill säga 12/1,5 = 8.

Därmed har vi bestämt alla de små trianglarnas areor. Arean för hela parallelltrapetser är
röd + brun + grön + blå = 18 + 8 + 12 + 12 = 50 (areaenheter)

Kommetarer

Måste erkänna att jag försökte lösa den här uppgift snabbt och misslyckades! Hade en alldeles för avancerad lösning och räknade fel någonstans på vägen. Så här ska man kunna “lagom” mycket geometri :)

“Lagom” mycket geometri innebär bland annat: parallellitet, alternatvinklar, vertikalvinklar, likformiga trianglar, likformighetskoefficient, arean för en triangel, val av bas/höjd i en triangel. Inte så lite man ska kunna!

Framför allt ska man vara skolad för att genomföra bevis för att redovisa uppgiften på ett korrekt sätt. Geometriundervisningen som bygger på axiom/bevisföring har i princip försvunnit från svenska skolor, därför lyckades nästan ingen av deltagarna lösa (eller ens få poäng) på den här uppgiften. Jag tvivlar på att särskilt många gymnasister skulle kunna lösa den här uppgiften heller.

Problem 5

Genom att flytta om siffrorna i talet 2013 kan man få 18 olika fyrsiffriga tal. På hur många
sätt kan man välja två olika av dessa 18 tal så att deras summa är precis lika med ett av
de återstående 16 talen?

Lösning

Provar man lite så ser man att det här aldrig går. Hur förklarar vi det här på ett allmängiltigt sätt?

Om två tal som bara består av siffrorna 0, 1, 2 och 3 adderas, så kommer entalen, tiotalen, hundratalen samt tusentalen adderas var för sig, eftersom siffrorna är så pass små. Men det betyder att siffersumman för resultatet av additionen kommer vara lika med siffersumman för det första talen adderat med siffersumman för det andra talet.

Detta kan ju inte hända, eftersom siffersummorna för alla talen är 6. Därför kommer siffersumman för resultatet att bli 12 och det kan inget av talen i uppgiften ha.

Kommetarer

Den här uppgiften kan lösas på mängder av olika sätt, jag angav det kortaste jag kunde komma på. Sätter eleven in sig i uppgiftens formulering, så är resultatet mer eller mindre uppenbart. Hur man ska förklara resultatet är däremot inte lika uppenbart.

Jag tror att många elever känner intuitivt att det har med siffersumman att göra, men de är inte vana vid att formulera lösningar på det sätt, med bevarande av siffersumma och dylika termer. Därför gissar på att de använde mer krångliga förklaringar. Det kan vara frustrerande att försöka förklara något som är så pass uppenbart, men en bra övning om man vill bli bättre på att förstå och formulera egna bevis.

Problem 6

Rutnätet i figuren skall fyllas med tal. I varje ruta (utom i understa raden) står summan
av de två talen i rutorna direkt under den. Vilket tal skall stå i den översta rutan?
talpyramid

Lösning

Den här uppgiften kan både lösas baklänges (nerifrån och upp) och framlänges (uppifrån och ner). Istället för att bara införa två variabler inför vi jättemånga, det vill säga betecknar varje okänt tal med en bokstav.
talpyramid_variabler

Talet A består av talen B och C.

Talen B och C består av talen D och 503 och 503 och E.

Talen D och 1006 och E består av talen 253 och F och 1006 och G och 251. Totalt alltså 1510 och F och G.

Inte har vi kommit fram till svaret än, men vet att pyramidegenskapen även gäller talet 503: att det består av talen F och G.

Så vi vet att talet A består av 1510 och F och G, med andra ord av 1510 och 503, det vill säga lika med 2013. Klart!

Kommetarer

Även här tror man kanske att hela pyramiden måste bestämmas för att avgöra det översta talet, men så är inte fallet. Det finns flera olika pyramider som ser ut på det sättet och alla måste då ha 2013 i toppen. Notera att det är på samma sätt som i uppgift 2 och uppgift 4 – flera olika konstruktioner uppfyller uppgiftsvillkoren, men ger ändå ett och samma svar i slutändan.

Ibland (eller kanske alltid) går matematik ut på att dra korrekta och allmängiltiga slutsatser i situationer där vi inte har tillgång till fullständig information.

Vill du få extrainfo om problemlösning via e-post från Mattebloggen?

Det kan vara allt från problemlösningstips till info om olika tävlingar. Din e-postadress kommer att hanteras varsamt.

Namn

E-post

Schinzels sats

Har du läst om hur man hittar pythagoreiska tripplar i cirklar? I artikelserien träffar vi på många cirklar som har några punkter med heltalskoordinater på periferin.

Men oftast är antalet punkter delbart med 4 (cirkeln är centralsymmetrisk i förhållande till koordinatsystemet, eftersom mittpunkten ligger i vårt fall antingen i en heltalsnod eller i mitten av en ruta). Men kan vi hitta en cirkel med ett annat antal punkter på periferin, t.ex. 6?

Klicka här för svar

Vi vill alltså ta reda på för vilka n det går att hitta en cirkel som går igenom exakt n heltalspunkter.

Går det att hitta en cirkel med en heltalsnod på periferin? Så klart går det, vi kan t.ex. ta en cirkel med en väldigt liten radie som går igenom en godtycklig punkt.

Två heltalsnoder på periferin då? Ja, vi kan ju skapa cirklar som inte är rotationssymmetriska, men däremot spegelsymmetriska, genom att välja att ha mittpunkten på cirkeln i (0, 0.5) till exempel eller egentligen var som helst mellan två närliggande heltalsnoder. Tar vi radien lika med 0.5 så är vi garanterade att inga andra heltalsnoder än (0,0) och (0,1) kommer med på cirkelns periferi.

Hur gör vi med 3 punkter på periferin? Cirkeln får nu varken vara spegelsymmetrisk eller rotationssymmetrisk med avseende på heltalsnoderna (om två periferipunkter ligger strikt på vänstra/högra halvan av cirkeln). Således måste vi placera mittpunkten varken i en heltalspunkt eller i en “halvtalspunkt”. Under några antaganden kan vi försöka hitta en cirkel med två heltalspunkter som befinner sig på samma vertikala linje. Vi antar att cirkelns horisontella diameter ligger på linjen y=0.

cirkel kanske 3 punkter

Koordinaterna för mittpunkten är då (s, 0) och för heltalsperiferipunkterna (0, a), (0, -a) samt (b, 0). Då får vi likhet av två radier (i kvadrat):

s2 + a2 = (b – s)2

s2 + a2 = b2 – 2bs + s2

a2 = b2 – 2bs

Både a och b är positiva heltal, medan s är ett positivt reellt tal (förmodligen större än 1). Därför måste b vara åtminstone 3 och vi prövar b = 3.

Då måste a2 = 9 – 6s. Tar vi a = 1 får vi s = 4/3 vilket ger oss cirkeln:

cirkel 3 punkter

Denna har exakt 3 punkter på periferin! Men hur gör man i det allmänna fallet? Kan man alltid få relativt snygga cirklar, det vill säga där punkterna ligger i par på respektive vertikallinjer? Det visar sig att man kan det med hjälp av Schinzels sats!

Schinzels sats

Det existerar en cirkel med exakt n heltalspunkter på periferin för varje naturligt tal n.

För jämna n=2k har Schinzels cirkel ekvationen

(x-\frac{1}{2})^2 + y^2 = \frac{1}{4}5^{k-1}

Medan för udda n=2k+1 har Schinzels cirkel ekvationen

(x-\frac{1}{3})^2 + y^2 = \frac{1}{9}5^{2k}

Testa till exempel hur cirkeln med exakt 7 heltalspunkter på periferin ser ut!

Schinzels cirklar är inte nödvändigtvis de minsta med den egenskapen, men de är i alla fall snygga på sättet beskrivet innan, nämligen att heltalspunkterna på periferin förekommer i par, vilket kan ses från ekvationen (mittpunkten ligger på en horisontell heltalslinje).

Kan du bevisa att Schinzels cirklar uppfyller egenskaperna som det påstås i satsen? Helt trivialt är det ju inte att bevisa.

Tack Sture Sjöstedt för frågeformuleringen, samt länkar och tips!