Adventspyssel 16

Om ni har tröttnat på vanligt luffarschack, prova spelet nedan!

Annorlunda luffarschack

Assar och Karim spelar luffarschack på ett 3×3-bräde, Tic Tac Toe, fast med nya regler: spelarna har inte ”egna” symboler, utan får välja varje drag mellan att sätta ut kryss eller noll. Till exempel kan två kryss sättas ut två drag i rad. Det är fortfarande den spelaren, som gör så att det bildas tre likadana symboler i rad, som vinner.

Om Assar alltid börjar och de turas om att göra drag, kan någon av dem alltid se till att vinna?

Prova att spela spelet med någon annan och försök att garanterat vinna som första spelare eller att vinna som andra spelare, om du tror att du har en strategi.

Visa svaret

Hemliga uträkningar

Rekommenderad från: 15 år

[kkratings]

Robert tänker på två positiva tal: x och y. Han skriver ner 4 tal på ett papper: x+y, x-y, xy och \frac{x}{y}, men säger inte i vilken ordning han skriver ner dem. Hur kan Adam lista ut vilka tal Robert tänker på genom att bara titta på pappret (Adam vet alltså inte vilken operation varje tal motsvarar)?

Visa lösningen

Fast på gräsmattan

Rekommenderad från: 14 år

[kkratings]

Fredrik står i mitten av en rund gräsmatta, som har radien 100 meter. Varje steg Fredrik tar är 1 meter långt. Varje gång han ska ta ett nytt steg anger han riktningen som han ska gå i. Anna har då möjlighet att ändra Fredriks riktning mot den motsatta.

Kan Fredrik att komma på ett sätt att komma av gräsmattan oavsett vad Anna gör? Eller kan Anna alltid hindra honom?

Visa lösningen

Kenken och set

För den som tröttnat på Sudoku och Battleships vill jag föreslå ett par andra pussel.

Den första är kenken, ett spel som självaste Gunnar Berg spenderar timmar med! Till synes liknar pusslet sudoku, men man får inte lika många siffror utsatta från början. Det gäller att fylla tabellen så att siffrorna inom varje rad respektive kolonn är olika (siffrorna skall vara från 1 till tabellens storlek). Dessutom skall olikaformade rutor ge ett visst resultat med given operation. Står det 15+ till exempel, så ska siffrornas summa i området vara 15.

Det pusslet är lite roligare än sudoku tycker jag. Man får öva på lite fler tekniker. Det bästa man kan göra för att lösa pusslet är att tillämpa den så kallade flaskhalsprincipen. Man börjar med den platsen, där det finns så få möjligheter som möjligt. Till exempel, står det 4x i ett område innehållande två rutor, så vet man att talens produkt skall vara lika med 4. Men eftersom de står på samma rad/kolonn så är enda möjligeten talen 1 och 4 (men man vet inte än i vilken ordning de kommer). Man lär sig lite om olika sådana exempel för varje aritmetisk operation. Prova på själv!

ett set
ett set

Den andra spelet är Set, som i original pappersversion kan spelas med flera personer. Det gäller så snabbt som möjligt att hitta en trippel med kort som följer regeln ”allt lika eller allt olika”. Alltså varje egenskap som korten kan ha (färg, form, antal, fyllning) ska den i en set antingen vara lika för alla kort eller vara olika för alla kort. En annan tumregel är: ”om två är något, men inte den tredje, så är det inte ett set”. Det brukar vara svårt att hitta ett set i början, men efter ett tag utvecklar man ett sorts ”seende” och kan snabbt hitta de rätta korten. Spelet passar exakt lika bra för vuxna som barn.

Spel på en remsa

Rekommenderad från: 15 år

[kkratings]

Det finns en rutig remsa 1xn:

remsa

Anders och Filip spelar ett spel. De turas om att göra drag: Anders får sätta ett kryss i en tom ruta och Filip får sätta en ring i en tom ruta. Dock får inte två kryss hamna bredvid varandra och inte heller två ringar. Spelaren, som inte kan göra ett drag när det är hans tur, förlorar.

Anders gör det första draget. Vem har ett vinnarstrategi, det vill säga vem kan alltid vinna oavsett hur motståndaren spelar?

Observera att svaret kan bero på talen n, som säger hur lång remsan är.

Visa lösningen

Kan man lära ut matte med hjälp av spel?

Eller en ekvivalent fråga: kan man lära sig matte med hjälp av spel?

Jag har lagt till en spelsida på bloggen med lite snodda småpussel. Syftet med detta är ännu oklart, men det fick mig att tänka på ovanstående frågor. Så nu menar jag alltså spel för en person, säg datorspel.

Kännetecken för spel är det interaktiva, det som just är kärnan i allt lärande.

Säg till exempel att ni skall förstå situationen ”kontinuerlig, men inte deriverbar (i en viss punkt)”. Någon säger till er att denna situation förekommer och ni försöker förstå varför detta är möjligt. Ni kommer kanske på själva eller oftast berättar läraren rakt av exemplet y=|x|, beloppfunktionen. Aha, nu är det klart hur det kan vara möjligt!

spel

Något senare träffar ni på ett annat exempel, som den till höger. Och visst passar den och ni kanske kommer ihåg den i kort tid. Men om någon frågar er om en funktion som är kontinuerlig men inte differentierbar i alla punkter, så föreställer ni er först av allt y=|x|. Lite för att ni såg den först, men mest för att ni förstod den först.

Det kanske inte var ett jättebra exempel. Men fråga nästan vem som helst som har bevisat något. Om man bevisar någonting själv, men sedan får se ett snyggare och kortare bevis för samma sak, minns man ändå med all säkerhet sitt egna bevis, men inte det andra.

Därför är det helt avgörande för inlärningen hur mycket eleven själv får jobba.

Kan man då på något sätt få in matematikens lärdomar i ett spel? Vad är det man redan kan lära sig i existerande spel?

Tag sudoku till exempel. Brukar stå i tidningar ”träna din hjärna mha en sudoku varje dag” osv osv. Det sudoku egentligen tränar är:

1. Förmågan att se över mönstret och urskilja det viktiga, till exempel titta på alla 9:or och fylla i dem som saknas.

2. Tekniken ”systematisk fallundersökning”. Ifall det finns flera möjligheter för en viss siffra, så kanske man skriver en möjlighet lite smått i en ruta och försöker forsätta. Det viktiga här är att inte glömma alla fall.

3. Problemlösningförmågan ifall man löser svåra sudokun. Om man inte fuskar och läser på nätet så kanske man upptäcker en ny metod själv.

Det är inte mer än så. Det händer ännu mindre om man spelat på samma nivå länge.

Poängen med de spelen jag överhuvudtaget kan komma på är att de tränar ”skills” och inte lär ut någon kunskap/fakta. Mycket lättare är det för ämnet historia, många har lärt sig största delen spelandes Civilization och Europa Universalis och inte i skolan. Historia handlar per definition om människans interaktion.

Matematiken och andra naturvetenskaper är mycket mindre beroende av människan.

Ett bra mattespel skulle gå ut på att spelaren löser problem eller hittar bevis. Det får mig att tänka på spelen som liknar Myst, det vill säga quest-spel. Man spelar väsentligen genom att klicka på saker i rätt ordning, gå till olika platser och hitta samband mellan saker som händer. Brukar vara jättekul att spela tills man fastnar på någon svår sekvens.

Går det att göra något liknande med ren matematik? Säg att man samlar ihop lappar med definitioner och påståenden. Lägger man dem i rätt ordning, så kommer kanske ett lemma ut. Och sista bossen är Fermats stora sats!

Låter inte som världens mest spännande spel, men tål att funderas vidare på. Slutsatsen jag drar är att spel kan träna och utveckla specifika förmågor, som är nyttiga i matematikstudier. Logisk resonering, mönsterseende, allt detta kommer till nytta. Men förståelsen för matematisk teori verkar omöjlig att lära ut på något sätt som inte är ekvivalent med traditionell lärare eller bok.

© 2009-2024 Mattebloggen