Matematik i Genikampen – tredje avsnittet

Tredje avsnittet av Genikampen innehöll mycket matte! Så mycket att det inte hanns med att skriva om det innan avsnitt fyra kom ut. Avsnitt fyra och fem kommer jag däremot att slå ihop till ett inlägg.

Avsnitt tre innehöll tre tävlingar: allmänbildningspyramiden, bombdesarmering och pussel i duellen.

Pyramiden

I pyramidtävlingen skulle vi välja ett av fyra svarsalternativ på varje fråga, ställa in lådorna med de sidorna framåt och sedan klättra upp på pyramiden för att få en kontroll. Programledaren Micke skulle då säga hur många rätt vi hade (men förstås inte vilka som var rätt) och då kunde vi ändra lådorna till nästa kontroll. Det gällde att få alla rätt, men hur ska man göra om man inte kan svaret på frågorna?

Hade man fått veta vilka frågor man hade fått fel på, så skulle det inte ta mer än fyra testomgångar för att lyckas få alla rätt — då tar man ju bara hela tiden nästa alternativ på de som är fel. Eftersom man bara får veta antalet, så gäller det att chansa lite vilka frågor man hade fått fel på.

Mer om detta senare, men i verkliga förloppet hade vi verkligen tur med att snabbt få noll rätt.

Foto: SVT/Genikampen/Axel Bååthe
Foto: SVT/Genikampen/Axel Bååthe

Som sagt i programmet ger detta oss nu 3^10 = 59049 möjliga kombinationer för de rätta svaren som ska testat istället för 4^10 = 1048576, nästan 18 gånger färre det vill säga! I termer av utvunnen information är det till och med lite sämre att få fem rätt, då man inte vet vilka fem det är och resterande fem kan varieras på tre sätt, så antalet kombos som fortfarande funkar är:

{10 \choose 5}\cdot 3^5 = 61236

Noll rätt är dessutom riktigt bra att få tidigt, då framtida manipulationer av lådor kan bara göras på tre sätt istället för fyra (om man nu kommer ihåg de felaktiga alternativen, men vi utgår från perfekt minne här förstås).

Nu är det intressant att avgöra vilken taktik som snabbast ger en alla rätt om man bara chansar (och inte använder faktakunskaper man tror man besitter, hade vi kunnat någon fråga så hade vi nog inte fått noll rätt :)).

För enkelhets skull jämför vi två taktiker: att chansa på en låda i taget eller att chansa på två lådor i taget (och sedan förändra dem en och en för att få båda rätt). Att vända på lådorna tar ungefär lika lång tid som att att vänta på svar från programledaren, så det är det totala antalet ”försök” som avgör tiden det tar att testa sig fram.

Om man vänder på en låda i taget (och har tre alternativ som kan vara rätt), så är det en på tre att man gissar rätt och två på tre att man gissar fel. I det andra fallet behöver man max gissa en gång till, sedan kan man gå vidare till nästa låda, eftersom man vet vilket alternativ som är rätt. Det allra sista kontrollen kan vi alltså bortse från (försumbart). Således, väntevärdet på antalet försök är:

\frac{1}{3}\cdot 1 + \frac{2}{3}\cdot 2 = \frac{5}{3}

Gör man detta för två lådor, blir väntevärdet då lite mer än 3.

Om vi vänder två lådor i taget kan vi få tre alternativ: antalet rätt ökar med 2, med 1 eller med 0. Om två lådor är rätt behövdes det då ett försök, om en låda är rätt, så behöver man först vända en av dem för att bestämma vilken låda som var rätt (om man vänder på den som var fel kommer antalet rätt öka med 0 eller 1 (det senare fallet händer med mycket liten sannolikhet), annars minska), sedan kommer man antingen behöva testa noll/ett alternativ till (om man vände på den lådan som var fel) eller ett/två alternativ (om man saboterade den lådan som var fel från början). Om man har däremot 0 rätt från början så vänder man på båda lådorna igen och sedan behöver vända en eller två gånger till för att få båda rätt. Totalt blir väntevärdet ungefär följande:

\frac{1}{9}\cdot 1 + \frac{4}{9}\cdot (\frac{1}{2}\cdot (\frac{1}{3}\cdot 1 + \frac{2}{3}\cdot 2) + \frac{1}{2}\cdot (\frac{1}{3}\cdot 2 + \frac{2}{3}\cdot 3)) + \frac{4}{9}\cdot (\frac{1}{4}\cdot 2 + \frac{2}{4}\cdot 3 +  \frac{1}{4}\cdot 2)

vilket också är lite mer än 3!

Därför spelar det inte så stor roll om man testar en låda i taget eller två (och sedan fixar till lådorna en och en). I längden får man göra lika många försök i alla fall.

Sedan är ju frågan om man ska gå efter genomsnittsfallet (3 försök på båda strategierna), på värsta fallet (att man har maximalt otur) eller på det bästa fallet (att man har maximalt tur).

Första strategin (vända en låda i taget) har följande antal försök (innan man vet de rätta svaren) på vart och ett av fallen:

Värsta fallet: 5
Genomsnittsfallet: 3
Bästa fallet: 2

Andra strategin har följande:

Värsta fallet: 4
Genomsnittsfallet: 3
Bästa fallet: 1

Detta visar på att om man vill köra ”safe” så ska man satsa på andra strategin, då man behöver försöka färre gånger om man har otur. Men ointuitivt nog ska man också köra på den om man vill köra ”djärvt” och vill kunna klara pyramiden på färsta möjliga antalet försök. Den första strategin är helt enkelt för ”långsam”. Detta förutsätter att man har bra minne, men i övrigt tror jag båda lagen körde på den här strategin, vilket visar på en bra intuition för matematik och sannolikheter hos deltagarna.

Bombdesarmeringen

I andra tävlingen skulle lagen komma på ett kommunikationssystem för att kunna överföra siffrorna 0-9 och bokstäverna A-J utan ljud på ett långt avstånd till sina lagkamrater. För att inte hålla för mycket i huvudet kom båda lagen på ett system för antingen siffrorna eller bokstäverna och endast den typen skickades (gult lag skickade siffror, blått — bokstäver). Sedan översatte mottagarna på flotten: A=0, B=1, C=2 och så vidare. Detta system förutsätter att mottagarna inte till exempel råkar tänka att A=1. Effekten +/-1 är annars är ett vanligt fel vuxna brukar göra, till exempel när de programmerar eller beräknar antalet dagar i ett visst tidsintervall.

Systemet med siffror tyckte vi hade en fördel, eftersom uppgifterna gick ut på att få fram siffror, både i del 1 och del 2. Det hade varit lite extraarbete och osäkerheterna kommer in när man först ska översätta siffran till en bokstav, skicka bokstaven och sedan ska bokstaven översättas tillbaka till siffran i del 1. Men det verkade blå laget klara bra, det var inte det som var svårast, utan att lösa uppgifterna var det. Sedan är det ju en fördel i andra delen, att skicka bokstäverna direkt. I vilket fall blir det samma antal översättningarna för båda strategierna i andra delen.

Foto: SVT/Genikampen
Foto: SVT/Genikampen

När jag ändå pratar om osäkerhetsfaktorer, så är det just på grund av dem som det hade varit bra att skicka all information på en gång i andra omgången. Dykaren får veta fem bokstäver vars motsvarande kablar hen ska klippa. OM man räknat fel så finns det stor sannolikhet att kabeln med bokstaven inte ens finns. (OM man till exempel får två likadana siffror som svar så vet man redan på berget att man har gjort fel. Det vet man inte om man skickar en siffra i taget.) Då kan dykaren låta bli att klippa något och säga att en viss bokstav inte finns, vilket mottaggarna får försöka kommunicera tillbaka till räknarna.

Lag gult hann inte dock skicka ut någon information i del 2, utav vi fokuserade på att kontrollräkna istället då vi inte fick några likadana siffror.

Vad gäller del 1 så var det bra att skicka ett lås i taget, då man kan kolla just ett lås i taget (och inte en siffra i taget), om det är rätt, och kostnaden för fel är mycket mindre.

Här hittar du lösningar till alla uppgifter. Som jag nämner i det inlägget så kunde man löst uppgifterna på ett ännu smartare sätt, då man visste att svaret skulle bli en siffra. En smart lösning som min kompis Johan B tipsade mig till uppgiften

((√256 x 20 − 25^2 + 15^2 + 3^4) x 10) / 5 = ?

är följande:

Vi vill veta vilken siffra som resultatet är, därför räcker det att betrakta uppgiften ”modulo 10”, det vill säga studera slutsiffram i varje steg. Till exempel ser vi att vi har uttrycket (√256 x 20 − 252 + 152 + 34) x 2, därför kommer siffran att bli jämn. Och därför räcker att kolla vad uttrycket innan x 2 kommer att vara modulo 5. √256 x 20 slutar på 0 oavsett vad √256 är, därför kan vi strunta i att räkna ut det. − 25^2 + 15^2 är båda delbara med 5 och därför inte kommer bidra till sista siffran när man multiplicerar med 2 i slutet. 3^4 är det enda viktiga och vi kan räkna ut att det slutar på 1. Därför blir slutsiffran 1×2=2.

På liknande sätt kunde man ha gjort med kabel 3-uppgiften (försök själv!)

(15 – 7)(1500 – 25) – 2200 x 3 – 8^4 – 2^10 – 79 = ?

Foto: SVT/Genikapem
Foto: SVT/Genikapem

Pusselduellen

Det var svårt att se pusslen under programinspelningen, så vi roade oss med att räkna antalet kombinationer som varje pussel kunde vara i. Sedan gäller det förstås att hitta en bra sökväg mellan alternativen för att lösa pusslen snabbt.

Första pusslet består av sex bitar. Det var kanske givet vilken bit som skulle vara längst ner (om det inte var givet kunde man ta en godtycklig bit), så de resterande bitarna kan du placera på 5!*8^5 = 3932160 olika sätt (när du väl väljer en bit och en plats kan du vrida biten på 8 olika sätt vid den platsen, givetvis kommer de flesta sätt att direkt inte passa). Det är såklart inte rimligt att testa alla de sätten då en människa kan direkt se vad som passar och vad som inte passar. Ganska enkel brute force löser uppgiften i det här fallet.

Andra pusslet bestod av 18 bitar! Om man nu bara testar att lägga ner dem som en apa (utan att bry sig om hålen), så kan man göra det på 18!*4^18 sätt (varje pinne kan placeras på 4 sätt, em kombination av bak-och-fram eller inte och upp-och-ner eller inte), och det är för stort för att få plats i Google miniräknare-fönstret (storleksordningen 10^26)! Sedan kan man ha vissa symmetrier på hela konstruktioner, men det är bara en liten konstant som man delar med.
Man kan inte minska sökvägen jättemycket här heller, utan det finns väldigt många kombinationer ändå. Man får utgå från olika bitsorter och testa att starta på olika sätt. Inte konstigt att det tog lång tid…

Tredje pusslet är lättare än den andra, då det innehåller färre bitar. Här är tricket att börja med den största biten, den med mest volym och testa alla möjligheter för hur den kan sitta i den stora (än imaginära) kuben. Sedan ska den näst största biten in och så vidare. På så sätt kapar man sökträdet som bäst i början. Här är det svårt att uppskatta antalet kombinationer som behöver ”testas”, då pusslet har en mycket oregelbunden struktur.

Tändsticksproblem med twist

Det finns många tändsticksproblem som går ut på att flytta tändstickor för att få kvar någon särskild figur eller för att en viss likhet ska uppfyllas. Ett exempel på ett sådant problem kan du hitta i tidningen Forskning och Framsteg.

Här är dock tändsticksproblem som till en början verkar skumma eller omöjliga. Hur många kan du lösa?

1. Ta bort sju tändstickor så att det bara bli sju kvar.
tändstickor_1

2. Flytta så lite tändstickor som möjligt så att likheten gäller. Tändstickorna får brytas.
tändstickor_2

3. Flytta en tändsticka så att likheten gäller.
tändstickor_3

Visa lösningen

Korstal 2014

Korstal 2014

Fyll i precis som ett vanligt korsord (men endast med siffror). Obs! Inga tal börjar med noll.

korstal2014

Ladda ner för utskrift

Vågrätt:
1. Delbart med 9
4. Valören på en svensk sedel
5. Alla siffror i talet är likadana
7. Ett kubtal delbar med lodrätt 3
9. Ett tal bestående av siffror som är kvadrattal, där alla sådana siffror förekommer
11. Vågrätt 1 plus vågrätt 5 minus lodrätt 1

Lodrätt:
1. Antalet positiva tvåsiffriga tal
2. Ett palindromårtal i det förflutna
3. En delare till lodrätt 2
4. Vågrätt 1 minus vågrätt 5
5. Vågrätt 1 gånger vågrätt 5
6. Vågrätt 9 plus lodrätt 5
8. En tvåpotens minus lodrätt 1
10. Delbart med lodrätt 3

Ett kvadrattal är kvadrat av ett heltal. Ett kubtal är kub (tredjepotens) av ett heltal. Ett palindromtal är ett tal som ser likadant ut fram- som baklänges. En tvåpotens är 2 multiplicerat med sig själv några gånger (även 1 och 2 räknas som tvåpotenser). Med delbart med N menas att det går att jämnt dela med talet N. Med delare till N menas att N går att dela jämnt på det talet.

Visa lösningen

Hur man klarar 2048-spelet

Om du inte redan har sett 2048-pusslet, som blivit stort online, så kan du testa att spela det på http://gabrielecirulli.github.io/2048 Det går ut på att kombinera ihop tvåpotenser (från början 2:or och 4:or) så att det bildas 2048.

sample

Varning: Spelet är mycket beroendeframkallande!

Det tog mig några timmar att klara spelet, i början ”dör” man på tal som 256, 512 och i bästa fall 1024. Hur är det möjligt att klara spelet? Hur ska man göra för att komma vidare efter 2048 och inte ”dö” direkt?

Roligast är det om man kommer på strategierna själv, men om du känner dig fast efter några omgångar, så kan du ta del av följande tips. (Det finns såklart andra sätt att klara spelet, detta är bara vad jag kommit fram till.)

Välj ett hörn

Från början kan man bestämma ett hört, exempelvis högra-nedre hörnet där man samlar ihop sina tal. Det går att komma ganska högt genom att bara trycka ”höger” och ”neråt” varannan gång eller på måfå. Typiskt ser det ut så här när man inte längre kan göra något av de två dragen.

start

På grund av spelets regler kommer ditt största tal befinna sig i just det hörnet. Det allra bästa tipset jag kan ge i det här spelet är att du till allt pris behåller ditt största tal i det hörnet hela spelet igenom.

Justera tredje raden

För att uppnå höga resultat, se alltid till att ha full nedre rad och justera den tredje raden för att öka talen i den fjärde raden. Justering vänster-höger tills det passar på vertikal led är en viktig teknik i spelet.

Ordna potenserna på en rad

Det går att komma ganska långt med att trycka på ”höger” och ”neråt” hela tiden. Strategin för att samla ihop till ett stort tal i ett hörn är att ha som mål att ordna tvåpotenserna på nedre raden i följd. Till exempel vill du ha 64, 128, 256, 512 på nedre raden innan du bygger ihop till 1024.

ordna

Ordna mindre potenser på tredje raden

När du har fått 128, 256, 512, 1024 på nedersta raden, försök att uppnå 64, 32, 16, 8 på tredje raden (just det, i omvänd ordning!). Tal på tredje raden får man till genom att justera den andra raden.

en_rad_klar

Sätt ihop till 2048

Voila! Gör du en 8 till och sätter ihop med 16, 32, 64, 128, 256, 512 och 1024 i ordning, så får du 2048! I hörnet dessutom!

snart

Nu när du klarat spelet kan du ändå fortsätta spela. Samma tekniker funkar ett tag till, men så småningom gör man fel och behöver flytta på sista raden, vilket kan resultera i att 2048 inte är i hörnet längre. Då är mitt bästa tips att låta det hörnet vara, strunta i det fullständigt det vill säga!

Jag har kommit ganska långt men inte fått 4096 än. Har du några tips?

rekord

Bonus: om du inte gillar siffror, men gillar doge-bilder, finns det en rolig bildversion av spelet.

Om du förstår algoritmer bättre i action så kan du inspireras av ett AI som löser pusslet.

Update: Strategierna räckte för att klara 4096!

4096

Update++: Efter 3 veckor med spelet, äntligen:

8912

Spelet tog slut strax efteråt, med uppnått resultat med 106520 poäng. Känner mig klar med detta spel!

8912_game_over

Tärningsspel för små barn

Ett enkel spel med tärningar

Rekommenderas för

Förskolan, lågstadiet, mellanstadiet

Materiel

Ett spelplan (skriv ut nedan), två vanliga sexsidiga tärningar (helst av olika färger), minst 4 pjäser (från ”Fia med knuff” till exempel)

Tid

15 minuter

Antalet deltagare

2+

Regler

Reglerna är enkla: alla spelarna turas om att sätta ut sin pjäs på något av ”START”-fälten. Bara ett pjäs får stå på varje sådant fält. Det är viktigt vilket fält man ställer sin pjäs på, ställer man bredvid 10 till exempel, så blir 10 pjäsens tal.

Om man är två, tre eller fyra spelare är det bra om alla har minst två pjäser var. Alla kan till exempel sätta ut sin första pjäs, en i taget, och sedan sätta ut den andra pjäsen i omvänd ordning, för att det ska bli så rättvisst som möjligt.

Sedan är dags för själva racet. Man turas om att slå två tärningar, och beroende på vad summan av prickarna blev får en pjäs eventuellt gå fram ett steg (oavsett vem som slog tärningarna). Till exempel, om tärningarna visar summan 3, så är pjäsen som startade vid 3 den som får gå ett steg åt höger. Om ingen pjäs startade vid 3, så får ingen pjäs heller gå fram något.

Den som vinner är spelaren vars pjäs först kommer in i mål, det vill säga den pjäsen som först gick fyra steg fram. Man kan också köra tills tre pjäser kommer in i mål och på så sätt ha en etta, en tvåa och en trea. Bestäm själva beroende på hur ”segt” spelet går.

Naturligvis är det mest intressant att köra flera omgångar!

Tärningsspel-mattebloggen

Vad barn upptäcker själva

Utan att man berättar något annat än reglerna upptäcker barnen några saker själva:

1. Det är dumt att ställa sin pjäs på 13,14,15 och inte heller 1, för den summan kan aldrig visas på två tärningar.

2. 12 och 2 är inte heller så bra tal, för de kommer rätt så sällan.

3. Det är nog bäst att ställa i mitten, på 6-8 nånstans (och det är i princip alltid en av de pjäserna som vinner).

4. Allt det blir så, beror på att det finns många kombinationer det kan bli 7 på (1+6, 2+5, 3+4, 4+3, 5+2, 6+1 ses tydligast om tärningarna har olika färger), men färre på de andra talen.

Som sagt, man säger inte ord, och barn utför matematiskt tänkande själva! Undervisning när den är som bäst :)

Skriv ut ett spel själv

Ladda ner pdf:en med ett färdigt spelplan.

Pizzasats nummer 2

Matematik används inte bara när man ska skära upp pizza, utan också när man ska äta den. Möjligen har ni löst problemet nedan utan att ens tänka på matte.

När en pizzabit tas ut ur kartongen ser det ofta ut så här:
förväntning

Mot detta finns följande strategi:
strategi

Men varför fungerar det? Det hela beror på en sats som Gauss kom på.
gauss

Gauss sats har att göra med att alla ytor har så kallad krökning. Det är ett mått på hur mycket objekt kan böja sig utan att deras ”materiella” struktur förstörs (fler exempel på detta kommer senare).

Varje naturlig kurva har en specifik böjningsradie r i varje punkt. Storheten 1/r kallar vi då för krökningen i den punkten. Om kurvan är rak kring punkten, så säger vi att böjningsradien är oändligt stor och krökningen är lika med 0.

krökning

Samma definition gäller för ytor, men nu har punkten många olika värden på krökningen – en i varje riktning. Det maximala samt det minimala värdet av krökningen för en punkt kallas för huvudkrökningar.

kurvatur_yta

TIll exempel, på ett plan har alla punkter alltid krökning 0, medan på en sfär med radie R har alla punkter överallt krökningen 1/R. En cylinder med radien R kommer ha huvudkrökningarna lika med 1/R respektive 0.

kurvatur_cylinder

Om vi böjer lite på ett A4-papper, så kommer inte avstånden mellan punkterna på pappret att förändras. Sådana ändringar av ytor kallas isometrier.

papper

Om vi rullar ihop pappret, kommer vissa punkter ha ett kortare avstånd mellan sig än tidigare, eftersom nu finns det vägar som går genom kortsidorna som nu nuddar varandra.

papper_rulle

Gauss underbara sats (Theorema Egregium) säger att vid en lokal isometri kommer inte ytans Gaussiska krökning (produkten av huvudkrökningarna) att förändras.

Så länge pizzabiten ligger i kartongen är alla dess krökningar lika med 0.

pizzabit_kurvatur

Så fort pizzabiten tas ut, kommer den att böja sig. Då kommer ena huvudkrökningen att växa, medan den andra förblir 0.

pizza_sned_kurvatur

Men om kanterna viks upp kommer den sistnämnda huvudkrökningen sluta vara 0. Men enligt Gauss sats ska produkten av huvudkrökningarna förbli noll, det vill säga den andra huvukrökningen måste bli 0.

pizza_upp_kurvatur

Pizzabiten rätar ut sig och går bra att äta!

(Bilderna är tagna ur ryska internet, källa okänd. Tack konstnären!)

Theorema Egregium förklarar varför vi inte kan omforma ett papper till en boll utan att skrynkla ihop det. Inte heller kan en boll slätas ut till en sfär.

Det mest kända exemplet på detta är kartor. Jorden kan inte få en platt karta utan att avstånd förvrängs. Testa ett kartpussel för att övertyga dig om detta.

Gardners drake

Du har säkert bilder eller monument där någon tycks följa dig med ögonen när du passerar. Men har du någonsin träffat en konstgjord varelse som följer dig med hela huvudet?

(Vänta ett tag innan videon laddas, det är värt besväret!)

anka_kanin

Synvillan fungerar bra på film

När kameran filmar, så registerar ”bara” den 2-dimensionella bilden, precis vad som skulle hända om du skulle kolla på världen med bara ett öga. Med ett öga ser du en platt bild, men med hjälp av ljussättningen, storlekar och din kunskap om världen uppfattar du ändå hur långt bort saker är. Det andra ögat ser en egen platt bild, men ser världen ur en annan vinkel. Eftersom hjärnan är medveten om de här vinklarna kan den lägga på de platta bilderna på varandra och du får ännu bättre djupseende. (Testa att titta ut genom fönstret, blundandes med ett öga. Öppna sedan det andra ögat och sedan blunda med det igen, öppna igen, blunda igen och så vidare. På så sätt kan du avgöra hur djupt du egentligen ser med bara ett öga.)

Hjärnan ser ett djup i taget

Problemet uppstår när två olika tredimensionella objekt har samma projektion, det vill säga den platta bilden som en kamera skulle registrera. Hjärnan kan då inte se två tredimensionella objekt samtidigt, utan måste växla och tycka en sak i taget.

Precis som att du inte kan se en anka och en kanin samtidigt på den här bilden:

anka_kanin

så måste du bestämma dig i varje stund om den lilla kuben är en utbuktning eller ett hål:
kub_illusion

Varför draken ser dig

Eftersom vid är vana vid tredimensionella objekt som ”buktar ut” snarare än ”buktar in”, så väljer hjärnan att tolka drakhuvudet som fylligt om vi kollar på draken med bara ett öga (ibland fungerar det även om vi kollar med två). Istället för att se drakhuvudet för det inbuktade fusket det faktiskt är, så går hjärnan hellre med på att draken följer oss med huvudet hur vi än tittar på den. Drakens konstruktion är baserad på design av Jerry Andrus.

Tillverka själv

Rekommenderas för: alla åldrar, men för att draken ska fungera krävs noggrannhet, så någon över 12 år borde närvara

Materiel: utskrifter med drakar, sax, lite tejp eller lim

Tid: 30 minuter för tillverkning, samt 30 minuter för tokigt tittande på den färdiga draken.

Ladda ner en drakbild och skriv ut på en A4. Instruktionerna finns på bilden, men är på engelska. Det du behöver veta är att ”mountain fould” betyder att man ska vika pappret som ett ”berg” längs med linjen, det vill säga så att spetsen utgörs av sidan med drakbilden, och att ”valley fould” är tvärtom.

Börja med att klippa ut hela draken och lägg den sedan tillbaka till resten av pappret för att se de exakta instruktionerna. Har du några frågor om konstruktionen, skriv i kommentarerna!

blue_dragon

green_dragon

red_dragon

Måla egna fraktaler

Har du alltid velat att rita egna fraktaler, men inte vetat hur man gör?

Grundprincipen för en fraktal är ett mönster som upprepar sig inuti figuren om och om igen. De mest kända exempel är:

Sierpinskis triangel

En liksidig triangel delas upp i fyra likadana delar och den mittersta lämnas oberörd. Samma sak händer med de andra tre delarna: var och en av dem delas upp i fyra och den mittersta lämnas oberörd. Fortsätt i alla oändlighet och du får Sierpinskis triangel!

Lite alternativ framställning av samma fraktal

Kochs snöflinga

Börja återigen med en liksidig triangel. Sudda bort de mittersta tredjedelarna på varje sida och rita två sidor som om det fanns en till liten liksidig triangel där. Fortsätt med de små nya sidor som bildats och så vidare. Du får Kochs snöflinga!

Klicka på bilden!

Mandelbrotmängden

Mängdens beskrivning är lite mer avancerad, men denna fraktal är otroligt vacker. Mängden består av alla komplexa tal (varje tal motsvarar en punkt i mänden) sådana att en viss process inte sticker ut mot ändligheten när man sätter in detta tal som parameter.

Klicka på bilden!

Så hur kan man skapa egna fraktaler? Du kan komma på en process som du gör om med en figur om och om igen, i mindre och mindre skala. Sådana processer kalla för rekursiva, vilket innebär att varje bild beror på de föregående på ett fixt sätt.

Ett enklare sätt är att måla fraktalerna på Recursive Drawing, där det finns en möjlighet att lägga in en bild i sig själv. Titta på introduktionsvideon eller börja måla direkt. Det går att skapa snygga fraktaler på 5 sekunder!

Denna fraktal är gjord av en enkel form (pinne med löv) lagd på sig själv:

Sierpinskis ”triangel” tog däremot långt tid att skapa:

Försök att göra det själv!
Kan du komma på ett sätt att rita en triangelform i programmet? Hur gör man sedan så att bilden kopieras i sig själv tre gånger och inte en?

Roliga spel med tråkiga ekvationer

De flesta människor tycker inte om algebra i skolan. Utan någon intuition för vad som händer tvingas de att lösa ekvationer i skolan. Och när ekvationen väl är löst finns det ingen känsla av tillfredsställning, snarare kvarstår förvirringen och tankarna som ”vad har jag precis gjort och varför var det bra?” dyker upp.

Många gånger har jag hört begreppet ”gamifiering” (”gamification” på engelska) nämnas i sådana diskussioner. Att göra om aktivitet i skolan till ett spel skulle göra det intressant för eleven att slutföra det. Små belöningar, även bara orden ”level completed”, kan motivera en att gå vidare. Dessutom erbjuder spel mer variation än mekanisk räkning.

Jag tror också på att spel är framtiden inom matematikundervisning. Än så länge har jag hittat två bra spel som handlar om ekvationer. Båda förverkligar en idé, till skillnad från massa andra spel som endast överför tråkig räkning från skrivblocket till datorn.

Den första är skapad av fieldsmedaljören Terence Tao. Hans tanke med spelet är att lära ut balansmetoden (det vill säga att man förändrar båda ekvationsled på samma sätt samtidigt), men samtidigt göra det intressant. Med begränsade operationer ska man lösa ut x så fort som möjligt. Även personer som är bra på matte kan få utmaning av de sista nivåerna.


Spela Terence Taos spel (tryck på bilderna på gubbarna, inte deras instruktioner).

Det andra spelet handlar om linjer och deras ekvationer. Enkel idé, briljant utförande!

Spela Algebra vs. Cockroaches

© 2009-2025 Mattebloggen