Phi-växter, pi-växter och e-växter, del 1

Hur kommer det sig att det finns spiraler på kottar, kronärtskockor och ananaser? Om du inte har sett förklaringen, rekommenderar jag Vi Harts videoserie ”Spirals, Fibonacci, and Being a Plant”: del 1, del 2 och del 3.

(Eller kolla upp en sida på svenska med många bra bilder.)

kotte

En av sakerna som avslöjs är att växternas blad växer ut med en och samma vinkel i förhållande till föregående bladet, nämligen vinkeln \frac{360^\circ}{\varphi}, där \varphi är det gyllenne snittet, även kallad det mest irationella talet. Detta för att bladen aldrig ska hamna direkt över och blockera solljus för varandra.

Eftersom bladen inte är hur tunna som helst, kommer de så småningom ändå överlappa varandra delvis. Därför bildas det spiraler, vilket förklaras i videorna. Men varför är antalet spiraler alltid lika med ett fibonaccital, för tallkottar oftast 5, 8 eller 13 (plocka upp en kotte och räkna spiralerna åt båda hållen)?

Min förklaring är att gyllene snittet approximeras med exempelvis 8/5, vilket betyder att växten efter 8 blad har avlagt 8\cdot\frac{360^\circ}{\varphi} grader, vilket är ungefär lika med 8\cdot\frac{360^\circ}{\frac{8}{5}} grader, det vill säga typ 5 varv. Och så med alla andra heltalsapproximationer, när växten
har gått ett ungefär helt antal varv, så har det vuxit ut ett fibonacciantal blad. När ett nytt varv börjar, bara då kan spiralerna börja växa, och därför är antalet spiral lika med antalet blad som vuxit ut hittills, det vill säga ett fibonaccital.

Vi sade förut att \varphi var det mest irrationella talet. Vad ska det betyda? Alla irrationella tal är ju lika irrationella, men vissa tydligen mer irrationella än andra. För växten innebär det att det nya bladet dyker upp inte bara på en ledig plats, utan också på en plats där det finns som mest utrymme (jag vet inte riktigt hur detta ska förklaras matematiskt).

Men varför skulle inte en växt kunna växa med en annan irrationell vinkel, som exempelvis \frac{360^\circ}{\pi} eller \frac{360^\circ}{e} grader? Talet \frac{22}{7} är ju en väldigt bra approximation av \pi, så varför skulle inte en sådan \pi-växt kunna ha 22 spiraler?

Nu när jag inte kan spekulera mer matematiskt, går jag ut i naturen och letar. De första två växter jag hittar verkar vara typiska \varphi-växter, men den tredje har vinkeln närmare 114,6^\circ, det vill säga \frac{360^\circ}{\pi}!

Eller nja, inte om man kollar på de färdigväxta bladen, då är det en vanlig \varphi-växt:
SAMSUNG

Den här då? Det är lite svårt att se i vilken ordning bladen har växt ut.

SAMSUNG

Men om det är någon av våra förmodade vinklar, bladen emellan, så är det i alla fall \pi:

SAMSUNG

SAMSUNG

Hurra! En \pi-växt! Så inte alla växter följer \varphi-lagen… Eller har jag mätt fel? Varför är de flesta växter ändå \varphi-växter?

Kan du hitta andra irrationell växter i naturen, kanske med vinkeln \frac{360^\circ}{\sqrt{2}} mellan bladen? Om en vecka kommer jag med mer spekulationer och förklaringar om växternas utväxtvinklar.

Pizzasats nummer 1

Geometri är inte bara någonting skäggiga greker höll på med, utan den kan vara användbar även för den gemene svensken – till exempel när man ska dela en rund pizza!

Om man får en pizza hemkörd och ska dela den på två personer, så brukar man skära pizzan i två halvor. Problemet är att om man inte skär precis genom mitten, så kommer inte halvorna att bli lika stora.

En metod som garanterar rättvis fördelning av pizzan är följande. Välj en punkt inuti pizzan, vilken som helst, och gör fyra snitt, med 45^\circ graders vinkel emellan.

Då, om ena personen får varannan utav bitarna som bildas, medan den andra får resten, så kommer båda få exakt hälften utav pizzan.

pizzasatsen
Den gula arean är lika stor som den lila.

Den generaliserade versionen av pizzasatsen, där man kan dela pizzan i ännu fler delar med lika stor vinkel mellan snitten (12, 16 delar osv.), bevisades av L.J.Upton 1968.

Man kan bevisa satsen på olika sätt, men bland annat finns ett bevis som består av en enda bild.

Nyfiken på beviset? Se ledtrådarna nedan i så fall.

Visa ledtråd 1

Visa ledtråd 2

Trapets till en triangel

Trapets till en triangel

[kkratings]

Dela upp figuren nedan i två delar som kan sättas ihop till en triangel.

Visa lösningen

Uppdelad rektangel

Uppdelad rektangel

[kkratings]

En rektangel är uppdelad i 6 kvadrater (se bilden nedan). Hur stor är den största kvadraten om den minsta har sidlängden 1cm?

Obs! Figuren är inte nödvändigvis perfekt, därför räknas det inte som en lösning att mäta längderna.

Visa lösningen

Klurig fyrhörning

Rekommenderad från: 17 år

[kkratings]

En konvex fyrhörning ABCD har kända sidlängder: AB = 5, BC = 10, CD = 14, DA = 11. Fyrhörningens diagonaler skär varandra med en viss vinkel. Hur stor är den vinkeln?

Visa lösningen

Öva på geometri inför SMT-kval

Kvalomgången i Skolornas matematiktävling sker imorgon. Om du vill fräscha upp era geometrikunskaper inför tävlingen
här står det korfattat vad du behöver plugga på. Notera att minst ett av problemen på tävlingen är ett klassiskt geometriproblem.

Tyvärr har de flesta deltagare nackdelen att inte ha gått igenom så mycket geometri i skolan. Har man övat på geometriproblem åtminstone några gånger, har man en stor fördel där, eftersom geometriproblemen är inte särskilt svåra (de algebraiska problemen på SMT kräver oftast fler icke-triviala insikter).

Några användbara geometrisatser har jag samlat i en cirkellektion i geometri. Vi pratade om följder av randvinkelsatsen och användningen utav dessa följder i problem om figurer som kan skrivas in i cirklar.

Kan du göra rätt på övningarna samt på de första fem problemen så har du fått hum om hur geometriproblem skall bevisas. Då kan du gå över till de svårare problem, som jag har hämtat från riktiga SMT-kvalomgångar. Notera dock att lektionen inte täcker geometriska tekniker som likformighet, areor, samt sinus- och cosinussatsen. Det finns så pass mycket användbar geometri, så att det inte får plats i enda lektion.

Lycka till på tävlingen! Skriv gärna i kommentarerna hur det har gått för dig och om tipsen har hjälpt :)

En lektion för små barn om trianglar

Detta är en kortfattad planering av en del av en lektion med barn på 5, 6, 7 respektive 10 år. Där det inte står något är aktiviteterna riktade åt de yngre barnen.

Notera att barnen redan har haft två lektioner om vinklar och olika vinkeltyper.

Trianglar

Det är dags att sätta ihop punkter, sträckor och vinklar till trianglar!

Sammanbinda punkter

Uppgiften är att kopiera av punkter på bilden till sitt eget papper och sedan sammanbinda dem till en triangel. De yngre barnen får ett lika stort papper som originalet, men de äldre får en annan storlek och därmed implicit får träna skala.

Exempelvis en sådan bild skall kopieras

Hur många hörn har en triangel? Hur många sidor?
Hur många spetsiga vinklar kan du hitta i din triangel? Hur många trubbiga? Är det någon som har en triangel med en rät vinkel?

Efter att alla är klara med övningen kan barnen få extraövning (eller så blir det läxa): sammanbinda alla tripplar av punkter, som är av samma färg.
Den här bilden:

Blir till en tolvuddig stjärna:

Rita och klipp ut en egen triangel

Barnen får välja färg på pappret och ett uppdrag av mig: rita en spetsvinklig, trubbvinklig eller en rätvinklig triangel. Sedan skall trianglar klippas ut och vi ordnar dem efter storleken på den största vinkeln (först den mest trubbvinkliga triangeln, sedan andra trubbvinklig, sedan rätvinkliga etc.).

Efter det får barnen låna varandras pappersrester för att klippa ut andra trianglar och bygga ihop ett torn (som bara består av trianglar). Tillsammans tillverkar vi ”triangellandet”:

Triangellandet från geometriboken

Kanske lägger jag ihop Sergels Torg – mönstret under tiden. Eller så klipper jag ut svarta och vita trianglar och barnen får arrangera dem till ”Sergels Torg”.

Triangelolikheten

Nu skall trianglar byggas av pinnar. Men det är inte alltid det går! Får man tre pinnar med längder 2cm, 3cm respektive 6cm, så går de inte sätta ihop till en triangel. Anledningen är triangelolikheten.

Barnen får en massa pinnar och skall hitta tre stycken som de kan sätta ihop till en triangel (med häftmassa till exempel). De äldre barnen ska försöka förklara när det går att bygga en triangel och när det inte går.

Vägar

Apropå triangelolikheten kan vi prata om den kortaste vägen och det kortaste avståndet med 7- och 10-åringarna. Hur kan man t.ex. avgöra om ens handled eller fotled är smalare (t.ex. med snöre)? Med samma hjälpmedel kan man avgöra vilket har större omkrets: en cirkel eller en liksidig triangel, inskriven i cirkeln?
Vilken väg från dörren till fönstret är kortast (notera att bord kan vara i vägen för den raka sträckan)?

Också att fundera på: vilken av dödsrelikerna har störst omkrets?

Bygga med en magnetisk struktur

Vi avslutar med att pyssla med en magnetisk byggsats, där bitarna är magnetiska pinnar och kulor, som binds ihop väldigt starkt med varandra. Vilka former på trianglar går att bygga med hjälp av byggsatsen? Går det att bygga 3D-strukturer som består av trianglar och i så fall vilka? (T.ex. en tetraeder eller en ikosaeder går att bygga.) För de äldsta barnen berättar jag om de platonska kropparna som finns och vi försöker bygga dem alla.

Notera att jag antagligen inte hinner med allt ovanstående på alla lektioner. Ibland fastnar barnen på en sak, ibland blir uppgiften för svår. Men det mesta kommer ändå med på lektionerna.

Triangellandet

Triangellandet

[kkratings]

Triangellandet har formen av en liksidig triangel. En inre gräns delar landet i två stater, som har lika stor area. Beskriv hur gränsen ser ut (formen och positionen) om den har den minsta möjliga längden.

Visa lösningen

© 2009-2025 Mattebloggen